IGBT模块驱动电路.._第1页
IGBT模块驱动电路.._第2页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、IGBT模块的使用和安装1. 简介IGBT(InsulatedGateBipolarTransistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。GBT(InsulatedGateBipolarTransistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)

2、组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。IGBT非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。图1所示为一个N沟道增强型绝缘栅双极晶体管结构,N+区称为源区,附于其上的电极称为源极。N+区称为漏区。器件的控制区为栅区,附于其上的电极称为栅极。沟道在紧靠栅区边界形成。在漏、源之间的P型区(包括P+和P一区)(沟

3、道在该区域形成),称为亚沟道区(Subchannelregion)。而在漏区另一侧的P+区称为漏注入区(Draininjector),它是IGBT特有的功能区,与漏区和亚沟道区一起形成PNP双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极。IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,切断基极电流,使IGBT关断oIGBT的驱动方法和MOSFET基本相同,只需控制输入极N沟道MOSFET,所以具有高输入阻抗特性。当MOSFET的沟道形成后,从P+基极注入到N层

4、的空穴(少子),对N层进行电导调制,减小N层的电阻,使IGBT在高电压时,也具有低的通态电压。22. 发展历史1979年,MOS栅功率开关器件作为IGBT概念的先驱即已被介绍到世间。这种器件表现为一个类晶闸管的结构(P-N-P-N四层组成),其特点是通过强碱湿法刻蚀工艺形成了V形槽栅。80年代初期,用于功率MOSFET制造技术的DMOS(双扩散形成的金属-氧化物-半导体)工艺被采用到IGBT中来。2在那个时候,硅芯片的结构是一种较厚的NPT(非穿通)型设计。后来,通过采用PT(穿通)型结构的方法得到了在参数折衷方面的一个显著改进,这是随着硅片上外延的技术进步,以及采用对应给定阻断电压所设计的n

5、+缓冲层而进展的3。几年当中,这种在采用PT设计的外延片上制备的DMOS平面栅结构,其设计规则从5微米先进到3微米。90年代中期,沟槽栅结构又返回到一种新概念的IGBT,它是采用从大规模集成(LSI)工艺借鉴来的硅干法刻蚀技术实现的新刻蚀工艺,但仍然是穿通(PT)型芯片结构。4在这种沟槽结构中,实现了在通态电压和关断时间之间折衷的更重要的改进。硅芯片的重直结构也得到了急剧的转变,先是采用非穿通(NPT)结构,继而变化成弱穿通(LPT)结构,这就使安全工作区(SOA)得到同表面栅结构演变类似的改善。这次从穿通(PT)型技术先进到非穿通(NPT)型技术,是最基本的,也是很重大的概念变化。这就是:穿

6、通(PT)技术会有比较高的载流子注入系数,而由于它要求对少数载流子寿命进行控制致使其输运效率变坏。另一方面,非穿通(NPT)技术则是基于不对少子寿命进行杀伤而有很好的输运效率,不过其载流子注入系数却比较低。进而言之,非穿通(NPT)技术又被软穿通(LPT)技术所代替,它类似于某些人所谓的“软穿通”(SPT)或“电场截止”(FS)型技术,这使得“成本一性能”的综合效果得到进一步改善。1996年,CSTBT(载流子储存的沟槽栅双极晶体管)使第5代IGBT模块得以实现6,它采用了弱穿通(LPT)芯片结构,又采用了更先进的宽元胞间距的设计。包括一种“反向阻断型”(逆阻型)功能或一种“反向导通型”(逆导

7、型)功能的IGBT器件的新概念正在进行研究,以求得进一步优化。IGBT功率模块采用IC驱动,各种驱动保护电路,高性能IGBT芯片,新型封装技术,从复合功率模块PIM发展到智能功率模块IPM、电力电子积木PEBB、电力模块IPEM。PIM向高压大电流发展,其产品水平为12001800A/18003300V,IPM除用于变频调速外,600A/2000V的IPM已用于电力机车VVVF逆变器。平面低电感封装技术是大电流IGBT模块为有源器件的PEBB,用于舰艇上的导弹发射装置。IPEM采用共烧瓷片多芯片模块技术组装PEBB,大大降低电路接线电感,提高系统效率,现已开发成功第二代IPEM,其中所有的无源

8、元件以埋层方式掩埋在衬底中。智能化、模块化成为IGBT发展热点。大电流高电压的IGBT已模块化,它的驱动电路除上面介绍的由分立元件构成之外,已制造出集成化的IGBT专用驱动电路。其性能更好,整机的可靠性更高及体积更小。IGBT是绝缘栅双极型晶体管(InsulatedGateBipolarTransistor),它是八十年代初诞生,九十年代迅速发展起来的新型复合器件。IGBT将MOSFET与GTR的优点集于一身,既有输入阻抗高、速度快、热稳定性好、电压驱动型,又具有通态压降低高电压、大电流的优点。因此,IGBT的新技术、新工艺不断有新的突破;应用频率硬开关5KHz40KHz,软开关40KHz15

9、0KHz;功率从五千瓦到几百千瓦的应用场合。IGBT器件将不断开拓新的应用领域,为高效节能、节材,为新能源、自动化和智能化提供了新的机遇。为了使初次使用者正确用好IGBT模块,最大限度地发挥IGBT模块的作用,以下是最基本的使用说明。依据装置负载的工作电压和额定电流以及使用频率,选择合适规格的模块。用户使用模块前请详细阅读模块参数数据表,了解模块的各项技术指标;根据模块各项技术参数确定使用方案,计算通态损耗和开关损耗,选择相匹配的散热器及驱动电路。3. IGBT模块的使用1. 防止静电IGBT是静电敏感器件,为了防止器件受静电危害,应注意以下两点:IGBT模块驱动端子上的黑色海绵是防静电材料,

10、用户用接插件引线时取下防静电材料立即插上引线;在无防静电措施时,不要用手触摸驱动端子。 驱动端子需要焊接时,设备或电烙铁一定要接地。2. 选择和使用 请在产品的最大额定值(电压、电流、温度等)范围内使用,一旦超出最大额定值,可能损坏产品,特别是IGBT外加超出Vces的电压时可能发生雪崩击穿现象从而使元件损坏,请务必在Vces的额定值范围内使用!工作使用频率愈高,工作电流愈小;源于可靠性的原因,必须考虑安全系数。如果使用前需要测试请务必使用适当的测试设备,以免测试损坏(特别是IGBT和FRED模块需要专业的测试设备,请勿使用非专业的设备测试其电压的最大值)。 驱动电路:由于IGBTVce(sa

11、t)和短路耐量之间的折衷关系,建议将栅极电压选为+VG=1415V,-VG=510V,要确保在模块的驱动端子上的驱动电压和波形达到驱动要求;栅极电阻Rg与IGBT的开通和关断特性密切相关,减小Rg值开关损耗减少,下降时间减少,关断脉冲电压增加;反之,栅极电阻Rg值增加时,会增加开关损耗,影响开关频率;应根据浪涌电压和开关损耗间最佳折衷(与频率有关)选择合适的Rg值,一般选为5Q至100Q之间。为防止栅极开路,建议靠近栅极与发射极间并联20K30KQ电阻。驱动布线要尽量短且采用双绞线;在电源合闸时请先投入驱动控制部分的电源,使其驱动电路工作后再投入主电路电源。 保护电路:IGBT模块使用在高频时

12、布线电感容易产生尖峰电压,必须注意减少布线电感和元件的配置,应注意以下保护项目:过电流保护、过电压保护、栅极过压及欠压保护安全工作区、过温保护。 吸收电路:由于IGBT开关速度快,容易产生浪涌电压,必须设有浪涌钳位电路。并联使用:应考虑栅极电路、线路布线、电流不平衡和器件之间的温度不平衡等问题。使用时请避开产生腐蚀气体和严重尘埃的场所。安装 散热器应根据使用环境及模块参数进行匹配选择,以保证模块工作时对散热器的要求。 散热器表面的光洁度应小于10mm,每个螺丝之间的平面扭曲小于10mm。为了减少接触热阻,推荐在散热器与模块之间涂上一层很薄的导热硅脂,模块均匀受力后,从模块边缘可看出有少许导热硅

13、脂挤出为最佳。 模块安装在散热器上时,螺钉需用说明书中给出的力矩拧紧。力矩不足导致热阻增4.IGBT模块IGBT是InsulatedGateBipolarTransistor(绝缘栅双极型晶体管)的缩写,IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,它融和了这两种器件的优点,既具有MOSFET器件驱动功率小和开关速度快的优点,又具有双极型器件饱和压降低而容量大的优点,其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内,在现代电力电子技术中得到了越来越广泛的应用,在较高频率的大、中功率应用中占据了主导地位。IGB

14、T的等效电路如图1所示。由图1可知,若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOS截止,切断PNP晶体管基极电流的供给,使得晶体管截止。IGBT与MOSFET一样也是电压控制型器件,在它的栅极发射极间施加十几V的直流电压,只有在uA级的漏电流流过,基本上不消耗功率。1.IGBT的等效电路2 IGBT模块的选择|f丫IGBT模块的电压规格与所使用装置的输入电源即试电电源电压紧密相关。其相互关系见下表。使用中当IGBT模块集电极电流增大时,所产生的额定损耗亦变大。同时,

15、开时,由于开关损耗增大,发热加剧,选用时应该降等使用。关损耗增大,使原件发热加剧,因此,选用IGBT模块时额定电流应大于负载电流。特别是用作高频开关时3 使用中的注意事项由于IGBT模块为MOSFET结构,IGBT的栅极通过一层氧化膜与发射极实现电隔离。由于此氧化膜很薄,其击穿电压一般达到2030V。因此因静电而导致栅极击穿是IGBT失效的常见原因之一。因此使用中要注意以下几点:在使用模块时,尽量不要用手触摸驱动端子部分,当必须要触摸模块端子时,要先将人体或衣服上的静电用大电阻接地进行放电后,再触摸;在用导电材料连接模块驱动端子时,在配线未接好之前请先不要接上模块;尽量在底板良好接地的情况下操

16、作。在应用中有时虽然保证了栅极驱动电压没有超过栅极最大额定电压,但栅极连线的寄生电感和栅极与集电极间的电容耦合,也会产生使氧化层损坏的振荡电压。为此,通常采用双绞线来传送驱动信号,以减少寄生电感。在栅极连线中串联小电阻也可以抑制振荡电压。此外,在栅极发射极间开路时,若在集电极与发射极间加上电压,则随着集电极电位的变化,由于集电极有漏电流流过,栅极电位升高,集电极则有电流流过。这时,如果集电极与发射极间存在高电压,则有可能使IGBT发热及至损坏。在使用IGBT的场合,当栅极回路不正常或栅极回路损坏时(栅极处于开路状态),若在主回路上加上电压,则IGBT就会损坏,为防止此类故障,应在栅极与发射极之

17、间串接一只10KQ左右的电阻。在安装或更换IGBT模块时,应十分重视IGBT模块与散热片的接触面状态和拧紧程度。为了减少接触热阻,最好在散热器与IGBT模块间涂抹导热硅脂。一般散热片底部安装有散热风扇,当散热风扇损坏中散热片散热不良时将导致IGBT模块发热,而发生故障。因此对散热风扇应定期进行检查,一般在散热片上靠近IGBT模块的地方安装有温度感应器,当温度过高时将报警或停止IGBT模块工作。4 保管时的注意事项一般保存IGBT模块的场所,应保持常温常湿状态,不应偏离太大。常温的规定为535°C,常湿的规定在4575%左右。在冬天特别干燥的地区,需用加湿机加湿;尽量远离有腐蚀性气体或

18、灰尘较多的场合;在温度发生急剧变化的场所IGBT模块表面可能有结露水的现象,因此IGBT模块应放在温度变化较小的地方;保管时,须注意不要在IGBT模块上堆放重物;装IGBT模块的容器,应选用不带静电的容器。5.选择方法5.1选择IGBT模块的电压规格与所使用装置的输入电源即试电电源电压紧密相关。其相互关系见下表。使用中当IGBT模块集电极电流增大时,所产生的额定损耗亦变大。同时,开关损耗增大,使原件发热加剧,因此,选用IGBT模块时额定电流应大于负载电流。特别是用作高频开关时,由于开关损耗增大,发热加剧,选用时应该降等使用。5.2测量静态测量:把万用表放在乘100档,测量黑表笔接1端子、红表笔

19、接2端子,显示电阻应为无穷大;表笔对调,显示电阻应在400欧左右.用同样的方法,测量黑表笔接3端子、红表笔接1端子,显示电阻应为无穷大;表笔对调,显示电阻应在400欧左右.若符合上述情况表明此IGBT的两个单元没有明显的故障.动态测试:把万用表的档位放在乘10K档,用黑表笔接4端子,红表笔接5端子,此时黑表笔接3端子红表笔接1端子,此时电阻应为300-400殴,把表笔对调也有大约300-400殴的电阻表明此IGBT单元是完好的.用同样的方法测试1、2端子间的IGBT若符合上述的情况表明该IGBT也是完好的。将万用表拨在RxlOKQ挡,用黑表笔接IGBT的漏极(D),红表笔接IGBT的源极(S)

20、,此时万用表的指针指在无穷处。用手指同时触及一下栅极(G)和漏极(D),这时IGBT被触发导通,万用表的指针摆向阻值较小的方向,并能站住指示在某一位置。然后再用手指同时触及一下源极(S)和栅极(G),这时IGBT被阻断,万用表的指针回到无穷处。此时即可判断IGBT是好的。注意:若进第二次测量时,应短接一下源极(S)和栅极(G)。任何指针式万用表皆可用于检测IGBT。注意判断IGBT好坏时,一定要将万用表拨在RxlOKQ挡,因RxlKQ挡以下各档万用表内部电池电压太低,检测好坏时不能使IGBT导通,而无法判断IGBT的好坏。5.3注意事项由于IGBT模块为MOSFET结构,IGBT的栅极通过一层

21、氧化膜与发射极实现电隔离。由于此氧化膜很薄,其击穿电压一般达到2030V。因此因静电而导致栅极击穿是IGBT失效的常见原因之一。因此使用中要注意以下几点: 在使用模块时,尽量不要用手触摸驱动端子部分,当必须要触摸模块端子时,要先将人体或衣服上的静电用大电阻接地进行放电后,再触摸; 在用导电材料连接模块驱动端子时,在配线未接好之前请先不要接上模块; 尽量在底板良好接地的情况下操作。在应用中有时虽然保证了栅极驱动电压没有超过栅极最大额定电压,但栅极连线的寄生电感和栅极与集电极间的电容耦合,也会产生使氧化层损坏的振荡电压。为此,通常采用双绞线来传送驱动信号,以减少寄生电感。在栅极连线中串联小电阻也可

22、以抑制振荡电压。此外,在栅极一发射极间开路时,若在集电极与发射极间加上电压,则随着集电极电位的变化,由于集电极有漏电流流过,栅极电位升高,集电极则有电流流过。这时,如果集电极与发射极间存在高电压,则有可能使IGBT发热及至损坏。在使用IGBT的场合,当栅极回路不正常或栅极回路损坏时(栅极处于开路状态),若在主回路上加上电压,则IGBT就会损坏,为防止此类故障,应在栅极与发射极之间串接一只10KQ左右的电阻。在安装或更换IGBT模块时,应十分重视IGBT模块与散热片的接触面状态和拧紧程度。为了减少接触热阻,最好在散热器与IGBT模块间涂抹导热硅脂。一般散热片底部安装有散热风扇,当散热风扇损坏中散

23、热片散热不良时将导致IGBT模块发热,而发生故障。因此对散热风扇应定期进行检查,一般在散热片上靠近IGBT模块的地方安装有温度感应器,5.4当温度过高时将报警或停止IGBT模块工作事项。 一般保存IGBT模块的场所,应保持常温常湿状态,不应偏离太大。常温的规定为535°C,常湿的规定在4575%左右。在冬天特别干燥的地区,需用加湿机加湿; .尽量远离有腐蚀性气体或灰尘较多的场合; 在温度发生急剧变化的场所IGBT模块表面可能有结露水的现象,因此IGBT模块应放在温度变化较小的地方; 保管时,须注意不要在IGBT模块上堆放重物; .装IGBT模块的容器,应选用不带静电的容器。 检测IG

24、BT模块的的办法。6.IGBT试用驱动电路图107.5UlfE盯卫|I们佔|JLA品匚二IShowsIFwrj'dnenynns忌連盲駆反1GBT单管聂块付亏AdjutlSoftVDlttQfiTlnurSupplyShytdgwnFUqInput口+I5VoonJ':11500pFX4P9IplP8VinP7Vo地P6RTP5UROP4DC-P3ACP2ACPlDC+电流型PWM.IC驱动器>IC驱动器w击审源簸懈助电路150mA辅助电源IQuFtom1012z/VT10kI2NR4护VDj20onMP6750+35V24(K3SOVMP«75O200Q(RllIO74LS07DilUDi2COMDMIGB1;Di6Vri*01Citv亦HOINIIOCOMVa;!?'Lrfj%VnINIK)COMVs11世3%VH74HCOS列LSflrtNV'viwhv(nnTRI-SICAPHvcov:i-J-V匚GNIJLMV,ZSZ51DWzszs4-iz-v1DVssJ7k过电流c信号输出15154M57962LW>£Lj

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论