动力学三大定律的综合应用汇总_第1页
动力学三大定律的综合应用汇总_第2页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、动力学三大定律的综合应用教学目的:1.明确三大定律的区别及解题过程中的应用原则2.掌握三大定律解题的思路和方法教学重点、难点:用两个守恒定律去解决问题时,必须注意研究的问题是否满足守恒的条件考点梳理:一、解决动力学问题的三个基本观点1力的观点牛顿运动定律结合运动学公式,是解决力学问题的基本思路和方法,此种方法往往求得的是瞬时关系利用此种方法解题必须考虑运动状态改变的细节中学只能用于匀变速运动(包括直线和曲线运动),对于一般的变加速运动不作要求2动量的观点动量观点主要考虑动量守恒定律3能量的观点能量观点主要包括动能定理和能量守恒定律动量的观点和能量的观点研究的是物体或系统经历的过程中状态的改变,

2、它不要求对过程细节深入研究,关心的是运动状态的变化,只要求知道过程的始末状态动量、动能和力在过程中功,即可对问题求解二、力学规律的选用原则1选用原则:求解物理在某一时刻的受力及加速度时,可用牛顿第二定律解决,有时也可结合运动学公式列出含有加速度的关系式2动能定理的选用原则:研究某一物体受到力的持续作用而发生运动状态改变时,涉及位移和速度,不涉及时间时优先考虑动能定理。3动量守恒定律和机械能守恒定律原则:若研究的对象为相互作用的物体组成的系统,一般用这两个守恒定律去解决问题,但须注意研究的问题是否满足守恒的条件4选用能量守恒定律的原则:在涉及相对位移问题时优先考虑能量守恒定律,即用系统克服摩擦力

3、所做的总功等于系统机械能的减少量,也即转变为系统内能的量5选用动量守恒定律的原则:在涉及碰撞、爆炸、打击、绳绷紧等物理过程时,必须注意到一般这些过程中均隐含有系统机械能与其他形式能量之间的转化这种问题由于作用时间都极短,故动量守恒定律一般能派上大用场三、综合应用力学三大观点解题的步骤1认真审题,明确题目所述的物理情景,确定研究对象2分析所选研究对象的受力情况及运动状态和运动状态的变化过程,画出草图对于过程比较复杂的问题,要正确、合理地把全过程划分为若干阶段,注意分析各阶段之间的联系3根据各阶段状态变化的规律确定解题方法,选择合理的规律列方程,有时还要分析题目的隐含条件、临界条件、几何关系等列出

4、辅助方程4代入数据(统一单位),计算结果,必要时要对结果进行讨论例1.如图6-3-1所示,在光滑水平地面上,有一质量ml=4.0kg的平板小车,小车的右端有一固定的竖直挡板,挡板上固定一轻质细弹簧.位于小车上A点处的质量m2=1.0kg的木块(可视为质点)与弹簧的左端相接触但不连接,此时弹簧与木块间无相互作用力木块与A点左侧的车面之间的动摩擦因数g=0.40,木块与A点右侧的车面之间的摩擦可忽略不计,现小车与木块一起以v0=2.0m/s的初速度向右运动,小车将与其右侧的竖直墙壁发生碰撞,已知碰撞时间极短,碰撞后小车以v1=1.0m/s的速度水平向左运动,g取10m/s2.(1) 求小车与竖直墙

5、壁发生碰撞的过程中小车动量变化量的大小;(2) 若弹簧始终处于弹性限度内,求小车撞墙后与木块相对静止时的速度大小和弹簧的最大弹性势能;(3) 要使木块最终不从小车上滑落,则车面A点左侧粗糙部分的长度应满足什么条件?m2mi【思路点拨】小车碰后向左的动量mv比木块m2向右的动量mv大,因此,最终木块和小车的总动量方向向左;弹簧的最大20弹性势能对应小车与木块同速向左时;而木块恰好不从小车左侧滑落对应车面A点左侧粗糙部分的最小长度.【解析】(1)设v的方向为正,则小车与竖直墙壁发生碰撞的过程中小车动量变化量的大小为p=mv-m(-v)=12kg-m/s1110(2)小车与墙壁碰撞后向左运动,木块与

6、小车间发生相对运动将弹簧压缩至最短时,二者速度大小相等,此后木块和小车在弹簧弹力和摩擦力的作用下,做变速运动,直到二者两次具有相同速度为止整个过程中,小车和木块组成的系统动量守恒设小车和木块相对静止时的速度大小为v,根据动量守恒定律有:mv-mv=(mm)v112012解得v=040m/s,当小车与木块达到共同速度v时,弹簧压缩至最短,此时弹簧的弹性势能最大,设最大弹性势能为Ep,根据机械能守恒定律可得EP=2m11v2+mv21220-2(m+m)v2=36J(3)根据题意,木块被弹簧弹出后滑到A点左侧某点时与小车具有相同的速度V.木块在A点右侧运动过程中,系统机械能守恒,而在A点左侧相对滑

7、动过程中将克服摩擦阻力做功,设此过程中滑行的最大相对位移为s,根据功能关系有=umgs22mV2+1mv2-;(m+m)v22112202i2解得s=0.90m,即车面A点左侧粗糙部分的长度应大于0.90m.【答案】(1)12kgm/s(2)0.40m/s3.6J(3)大于0.90m【规律总结】对两个(或两个以上)物体与弹簧组成的系统,在物体瞬间碰撞时,满足动量守恒,但碰撞瞬间往往有机械能损失,而系统内物体与外界作用时,系统动量往往不守恒,在系统内物体与弹簧作用时,一般满足机械能守恒,如果同时有滑动摩擦力做功,产生摩擦热,一般考虑用能量守恒定律对于有竖直弹簧连接的问题,弹簧的形变量与物体高度的

8、变化还存在一定的数量关系变式练习1.如右图所示,在光滑水平桌面上,物体A和B用轻弹簧连接,另一物体C靠在B左侧未连接,它们的质量分别为mA=02kg,m=m=0.1kg现用外力作ABC用B、C和A压缩弹簧,外力做功为7.2J弹簧仍在弹性限度内,然后由静止释放试求:(1) 弹簧伸长最大时弹簧的弹性势能;(2) 弹簧从伸长最大回复到自然长度时,A、B速度的大小.解析:取向右为正方向(1) 第一过程,弹簧从缩短至恢复原长mv+(m+m)v=0AA1BC11mV2+1(m+m)V2=E2AA12BC1p0代入数据得v=6m/s,v=6m/s,A11第二过程,弹簧从原长伸至最长,此时A、B速度相等,有m

9、v+mv=(m+m)vAA1B1AB2E=E-!(m+m)V2-2mv2pmp02AB22C1代入数据得v=2m/s,E=4.8J.2pm(2)第三过程,弹簧从最长至原长,有(m+m)v=mv+mvAB2AA3BB3(m+m)v2+E2AB2pm=mV22AA31+mv22BB3得v=2m/s,v=10m/s.A3B3【小结】弹簧伸长时,B、C间有弹力作用,A、B系统的动量不守恒,但以A、B、C作为系统,动量守恒以后B、C分离,A、B系统的动量守恒本题说明有多个物体时,需合理选择物体组成研究系统。例2如图6-3-3所示,某货场需将质量为ml=100kg的货物(可视为质点)从高处运送至地面,为(

10、2) 若货物滑上木板A时,木板不动,而滑上木板B时,木板B开始滑动,求比应满足的条件.若比=05,1求货物滑到木板A末端时的速度和在木板A上运动的时1间【思路点拨】货物沿光滑四分之一圆轨道下滑至底端过程中机械能守恒,求出到达轨道末端的速度,再根据圆周运动知识求对轨道的压力由摩擦力、牛顿第二定律和运动学公式求解U1应满足条件和货物滑到木板A末端时的速度及在木板A上运动的时间【解析】(1)设货物滑到圆轨道末端时的速度为v,对货物的下滑过程,根据机械能守恒定律得mgR=1/2mv2设货物在轨道末端所受支持力的大小为FN,根据牛顿第二定律得F-mg=mV2/RN110联立式,代入数据得F=3000NN

11、才根据牛顿第三定律,货物对轨道的压力大小为3000N,方向竖直向下(2)若货物滑上木板A时,木板不动,由受力分析得gmg<p(m+2m)g11212若滑上木板B时,木板B开始滑动,由受力分析得pmg>p(m+m)g11212联立式,代入数据得0.4<pV0.6p=0.5,由式可知,货物在木板A上滑动时,木板不动设货物在木板A上做减速运动时的加速度大小为a,由牛顿第二定律得pmg=ma设货物滑到木板A末端时的速度为vl,由运动学公式得v12-v02=-2al联立式,代入数据得v=4m/s设在木板A上运动的时间为t;由运动学公式得v=vat101联立式,代入数据得t=0.4s.变

12、式练习2:如右图所示,在距水平地面高为h处有一半径为R的1/4圆弧轨道,圆弧轨道位于竖直平面内,轨道光滑且末端水平,在轨道的末端静置一质量为m的小滑块A。现使另一质量为m的小滑块B从轨道的最高点由静止释放,并在轨道的最低点与滑块A发生碰撞,碰后粘合为一个小滑块C.已知重力加速度为g.求:(1) 滑块C对轨道末端的压力大小;滑块C在水平地面上的落地点与轨道末端的水平距离.解析:滑块B沿轨道下滑过程中,机械能守恒,设滑块B与A碰撞前瞬间的速度为v,则mgR=?mv221滑块B与滑块A碰撞过程沿水平方向动量守恒,设碰撞后的速度为v,则2mv=2mv12设碰撞后滑块C受到轨道的支持力为F,根据牛顿第二

13、定律,对N滑块C在轨道最低点有F-2mg=NR联立式可得:F=3mgN根据牛顿第三定律可知,滑块C对轨道末端的压力大小为F'=N3mg.例3如右图所示,质量m=1kg的平板小车B在光滑水平面上B以V=1m/s的速度向左匀速运动当t=0时,质量m=2kg的小铁块A以v=2m/s的速度水平向右滑上小车,A与小车间2的动摩擦因数为M=02若A最终没有滑出小车,取小平向右为正方向,g=10m/s2,则:(1)A在小车上停止运动时,小车的速度为多大?(2) 小车的长度至少为多少?解析:(1)A在小车上停止运动时,A、B以共同速度运动,设其速度为v,取水平向右为正方向,由动量守恒定律得:mv-mv

14、=(m+m)v,解得:v=lm/sA2B1AB设小车的最小长度为L,由功能关系得:lllumgL=mV2+mV2(m+m)vA2A22Bl2AB解得:L=075m变式练习3传送带间的动摩擦因数u=02物块A、B质量mA=m=lkg开始时A、B静止,A、B间压缩一轻质弹簧,贮有弹B性势能Ep=16J现解除锁定,弹开A、B.求:物块B沿传送带向右滑动的最远距离;(2)物块B滑回水平面MN的速度v;Bz若物块B返回水平面MN后与被弹射装置P弹回的A在水平面上相碰,且A、B碰后互换速度,则弹射装置P必须给A做多少功才能让AB碰后B能从Q端滑出?课后练习:1. 如图8所示,在光滑水平面上放有一个长为L的

15、长木板C,在C左端和距左端s处各放有一个小物块A、B,A、B都可视为质点,它们与C之间的动摩擦因数都是U,A、B、C的质量都是m,开始时B、C静止,A以某一初速度v0向右运动,设B与C之间的最大静摩擦力等于滑动摩擦力,求:(1)A相对于C向右滑动过程中,B与C之间的摩擦力大小.为使A、B能够相碰,A的初速度v0应满足什么条件?abc解析tOA相对于C向右滑动过程中B与C相对静止,共同加速度为a,对B物体:F=ma,故F=0.5ymgff当A、B、C三者具有共同的速度且A追上B时A刚好与B相碰由动量守恒定律得mv=(m+m+m)v0由能量守恒定律得11卩mgs=mv2一(m+m+m)v2202解

16、得v丽0七故若要使A、B能够相碰,A的初速度应满足v0认3血答案(1)05gg(2)v丽0x2. 甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p=5kgm/s,p=7kg-m/s,甲从12后面追上乙并发生碰撞,碰后乙球的动量变为10kgm/s,则两球质量m与m的关系可能是()12A.m=mB.2m=m1212C.4m=mD.6m=m1212解析甲乙两球在碰撞中动量守恒,所以有:p+p=pf+pf,将题给数据代入解得:pf=2kg12121m/s.由于在碰撞过程中动能不可能增加,所以f2f2有:Pi求滑块A与斜面间的动摩擦因数.求滑块A到达斜面底端时的速度大小.滑块A与弹簧接触后粘

17、连在一起,求此后弹簧的最大弹性势能.解析(1)滑块沿斜面匀速下滑时受力+P22>P+P2,将题给数据代入解得2m2m2m2m1212m<上m;根据题目给出物理情境是“甲从后面追上1172乙”,必须有vl>v2,即生>厶,将题给数据代入解得:mmm<切2,即m<m.综合上述分析得C、D正确.171172答案CD3. 如图6所示,粗糙斜面与光滑水平面通过光滑小圆弧平滑连接,斜面倾角伊37。,A、B是两个质量均为m=1kg的小滑块(均可看作质点),B的左端连接一轻质弹簧若滑块A在斜面上受到F=4N,方向垂直斜面向下的恒力作用时,恰能沿斜面匀速下滑.现撤去F,让滑块

18、A从斜面上距斜面底端L=1m处,由静止开始下滑取g=10m/s2,sin37°=06,cos37。=0.8.如右图所示根据牛顿第二定律mgsin沪”N,N=mgcos0+F联立解得m眉e=0.5mgcos0+F(2)滑块沿斜面加速下滑时受力如右图所示设滑块滑到斜面底端时的速度为v1,根据动能定理(mgsin-gmgcos0)代入数据解得v1=2m/s(3) 以A、B和弹簧为研究对象,当A、B速度相等时,弹簧的弹性势能最大,设它们共同的速度为v2根据动量守恒定律mv1=2mv2设弹簧的最大弹性势能为Ep,根据能量守恒代入数据解得Ep=1J答案(1)0.5(2)2m/s(3)1J4如图7所示,在水平地面上放有长木板C,C的右端有固定挡板P,在C上左端和中点各放有小物块A和B,A和B的尺寸以及P的厚度皆可忽略不计,A、B之间和B、P之间的距离均为L.设木块C与地面之间无摩擦,A、C之间和B、C之间的动摩擦因数均为U,A、B、C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论