

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2019年湖北省黄冈市中考数学试卷一、选择题(本题共8小题,每小题3分,共24分,每小题给出的4个选项中,有且只有一个答案是正确的)1. (3分)-3的绝对值是()A. -3B.+C.3D.±32. (3分)为纪念中华人民共和国成立70周年,我市各中小学积极开展了以“祖国在我心中”为主题的各类教育活动,全市约有550000名中小学生参加,其中数据550000用科学记数法表示为()A.5.5X106B.5.5X105C.55X104D.0.55X1063. (3分)下列运算正确的是()A.aa2=a2B.5a5b=5abC.a5a3=a2D.2a+3b=5ab4. (3分)若x1,x2
2、是一元二次方程x2-4x-5=0的两根,则Xx2的值为()A.-5B.5C.-4D.45. (3分)已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A'的坐标是()A.(6,1)B.(-2,1)C.(2,5)D.(2,-3)6. (3分)如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是()B.第3页(共17页)7. (3分)如图,一条公路的转弯处是一段圆弧(A5),点O是这段弧所在圆的圆心,AB=40m,点C是的中点,点D是AB的中点,且CD=10m,则这段弯路所在圆的半径为()B.24mC.30mD.60m8. (3分)已知林茂的家、体育场、文具店在
3、同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中xF列说法错误的是(A体育场离林茂家2.5kmB体育场离文具店1kmC. 林茂从体育场出发到文具店的平均速度是50m/minD. 林茂从文具店回家的平均速度是60m/min二、填空题(本题共8小题,每小题3分,共24分)9. (3分)计算(二)2+1的结果.10. (3分)-£x2y是次单项式.211. (3分)分解因式3x2-27y2=.12. (3分)一组数据1,7,8,5,4的中位数是a,则a的值是.13. (3分)如图,直线ABCD,直线EC分别与AB,CD相交于
4、点A、点C,AD平分Z14. (3分)用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为.15. (3分)如图,一直线经过原点O,且与反比例函数y=(k>0)相交于点A、点B,y过点A作AC丄y轴,垂足为C,连接BC.若ABC面积为8,则k=.16. (3分)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若ZCMD=120°,则CD的最大值.三、解答题(本题共9题,满分72分)17. (6分)先化简,再求值.z5a+3b8b、.1甘出币+),其中a,b1.且2-b2b2-且'且'匕十且18
5、. (6分)解不等式组64.:2y+5<3t5-y)19. (6分)如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF丄AE,DG丄求证:BF-DG=FG.20. (7分)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九()班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21. (8分)某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了
6、若干名学生进行调查(每人必选且只能选一类)先将调查结果绘制成如下两幅不完整的统计图©书画器乐戏曲曙兴趣谆程类型(1) 本次随机调查了多少名学生?(2) 补全条形统计图中“书画”“戏曲”的空缺部分;(3) 若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;(4) 学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕A,B,C,D表示)22. (7分)如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角a为45°,测得C点的俯角B为60°.求这两座建
7、筑物AB,CD的高度.(结果保留小数点后一位,1龙1.414,匚31.732.)ABC23. (8分)如图,在RtAABC中,ZACB=90°,以AC为直径的OO交AB于点D,过点D作OO的切线交BC于点E,连接OE.(1) 求证:ADBE是等腰三角形;(2) 求证:COEscab.24. (10分)某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(OWxWlOO).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1
8、)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w'(万元)不低于55万元,产量至少要达到多少吨?加万元)03070100盲吨25. (14分)如图,在平面直角坐标系xOy中,已知A(-2,2),B(-2,0),C(0,2),D(2,0)四点,动点M以每秒T个单位长度的速度沿B-C-D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的
9、抛物线上,当M为BC的中点时,若PAMKPBM,求点P的坐标;(3)当M在CD上运动时,如图.过点M作MF丄x轴,垂足为F,ME丄AB,垂足为E.设矩形MEBF与ABCD重叠部分的面积为S,求S与t的函数关系式,并求出S的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K是否存在点Q,使得AHOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.图图2019年湖北省黄冈市中考数学试卷答案与解析一、选择题(本题共8小题,每小题3分,共24分,每小题给出的4个选项中,有且只有一个答案是正确的)1【分析】利用绝对值的定义求解即可.【解答】解:-3的
10、绝对值是3.故选:C.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2【分析】根据有效数字表示方法,以及科学记数法的表示形式为aX10n的形式,其中1WlalVIO,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值V1时,n是负数.【解答】解:将550000用科学记数法表示为:5.5X105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为aX10n的形式,其中1WlalV10,n为整数,表示时关键要正确确定a的值以及n的值.3【分析】直接利用单项式乘以单项式以及同底
11、数幕的乘除运算法则、合并同类项法则分别化简得出答案.【解答】解:A、aa2=a3,故此选项错误;B、5a5b=25ab,故此选项错误;C、a5a3=a2,正确;D、2a+3b,无法计算,故此选项错误.故选:C.【点评】此题主要考查了单项式乘以单项式以及同底数幕的乘除运算、合并同类项,正确掌握相关运算法则是解题关键.4【分析】利用根与系数的关系可得出Xx2=-5,此题得解.【解答】解:°.°X1,%?是一兀二次方程x2-4x-5=0的两根,.°.XX2a第9页(共17页)故选:A.【点评】本题考查了根与系数的关系,牢记两根之积等U是解题的关键.a5【分析】将点A的横
12、坐标不变,纵坐标减去4即可得到点A'的坐标.【解答】解:点A的坐标为(2,1),°将点A向下平移4个单位长度,得到的点A'的坐标是(2,-3),故选:D.【点评】此题主要考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移力口,左移减;纵坐标上移加,下移减.正确掌握规律是解题的关键.6【分析】左视图有1列,含有2个正方形.【解答】解:该几何体的左视图只有一列,含有两个正方形.故选:B.【点评】此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.7【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r-10,OB=r,结合勾股定理可推出半
13、径r的值.【解答】解:TOC丄AB,AD=DB=20m,在RtAAOD中,OA2=OD2+AD2,设半径为r得:r2=(r-10)2+202,解得:r=25m,这段弯路的半径为25m故选:A.【点评】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度.8【分析】从图中可得信息:体育场离文具店1000m,所用时间是(45-30)分钟,可算出速度.【解答】解:从图中可知:体育场离文具店的距离是:2.5-1.5=1km=1000m,所用时间是(45-30)=15分钟,体育场出发到文具店的平均速度=m/min153故选:C.【点评】本题运用函数图象解决问题,
14、看懂图象是解决问题的关键.二、填空题(本题共8小题,每小题3分,共24分)9【分析】直接利用二次根式的性质化简得出答案.【解答】解:原式=3+1=4.故答案为:4.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.10【分析】根据单项式次数的定义进行解答即可.【解答】解:单项式-寺x2y中所有字母指数的和=2+1=3,此单项式的次数是3.故答案为:3.【点评】本题考查的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键11【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2-9y2)=3(x+3y)(x-3y),故答案为
15、:3(x+3y)(x-3y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:先把原数据按从小到大排列:1,4,5,7,8,正中间的数5,所以这组数据的中位数a的值是5.故答案为:5.【点评】本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.13【分析】依据平行线的性质,即可得到ZBAC的度数,再根据角平分线的定义,即可得到ZDAC的度数.【解答】解:.ABCD,ZACD=80°,.ZBAC=100°
16、,又AD平分ZBAC,.ZDAC=2zbAC=50°,故答案为:50°.第8页(共17页)【点评】本题主要考查了平行线的性质,以及角平分线的定义.解题时注意:两直线平行,同旁内角互补.14【分析】易得扇形的弧长,除以2n即为圆锥的底面半径,从而可以计算面积.【解答】解:扇形的弧长二=4n,130圆锥的底面半径为4nF2n=2.面积为:4n,故答案为:4n.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.15【分析】首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故BOC的面积等于AOC的面积,都
17、等于4,然后由反比例函数y=上的比例系数k的几何意义,可知AOC的面积等于£lkl,从而求出k的值.X2【解答】解:反比例函数与正比例函数的图象相交于A、B两点,A、B两点关于原点对称,:.OA=OB,BOC的面积=AOC的面积=8三2=4,又TA是反比例函数y=图象上的点,且AC丄y轴于点C, AOC的面积=寺lkl, lkl=4,2Vk>0,.k=8.故答案为8.【点评】本题考查的是反比例函数与一次函数的交点问题,涉及到反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=£lkl.16
18、【分析】如图,作点A关于CM的对称点A',点B关于DM的对称点B',证明MB为等边三角形,即可解决问题.【解答】解:如图,作点A关于CM的对称点A',点B关于DM的对称点B'.第9页(共17页).ZCMD=120°,:.ZAMC+ZDMB=60o,:.ZCMA'+ZDMB'=60°,AZAZMB'=60°,:MA'=MB',A'MB'为等边三角形TCDWCA'+A'B'+B'D=CA+AM+BD=2+4+8=14,CD的最大值为14,故答案为14
19、.ME【点评】本题考查翻折变换,等边三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题,属于中考常考题型.三、解答题(本题共9题,满分72分)17【分析】根据分式的运算法则即可求出答案.【解答】解:原式=:且'ab(a+b)5(且-b)ab(a+b)=5ab,当a=2,b=1时,原式=5:2.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:&4,;2k+5<3(5-k)解得:
20、x>-1,解得:xW2,贝y不等式组的解集是:-i<xW2.【点评】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19【分析】根据正方形的性质可得AB=AD,再利用同角的余角相等求出ZBAF=ZADG,再利用“角角边”证明ABAF和ADG全等,根据全等三角形对应边相等可得BF=AG,根据线段的和与差可得结论.【解答】证明:四边形ABCD是正方形,.AB=AD,ZDAB=90°, BF丄AE,DG丄AE,AZAFB=ZAGD=ZADG+ZDAG=90°,VZDAG
21、+ZBAF=90°,?.ZADG=ZBAF,在ABAF和ADG中,VBAF=ZADG Z商E二Z輻D,lAB=AD:.BAFADG(AAS),:.BF=AG,AF=DG,AG=AF+FG,:.BF=AG=DG+FG,:BF-DG=FG.【点评】本题考查了正方形的性质,全等三角形的判定与性质,证明BAFADG是解题的关键.20【分析】设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,根据时间=路程三速度结合九(1)班比其他班提前10分钟到达,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设其他班步行的平均速度为x米/分,则九(1)班步行的
22、平均速度为1.25x第11页(共17页)CCACBCD米/分,依题意,得:一=10,X1.ZDX解得:x=80,经检验,x=80是原方程的解,且符合题意,1.25x=100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21【分析(1)由器乐的人数及其所占百分比可得总人数;(2)总人数乘以书画对应百分比求得其人数,再根据各类型人数之和等于总人数求得戏曲人数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可.【解答】解:
23、(1)本次随机调查的学生人数为30三15%=200(人);(2)书画的人数为200X25%=50(人),戏曲的人数为200-(50+80+30)=40(人),(3)估计全校学生选择“戏曲”类的人数约为1200X=240(人);(4)列表得:ABCDAABACADBBABCBD第19页(共17页)DADBDC共有12种等可能的结果,其中恰好抽到“器乐”和“戏曲”类的有2种结果,恰好抽到“器乐”和“戏曲”类的概率堆_=¥?【点评】本题考查的是用列表法或画树状图法求概率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成
24、的事件.注意概率=所求情况数与总情况数之比.22【分析】延长CD,交过A点的水平线AE于点E,可得DE丄AE,在直角三角形ABC中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC-ED求出DC的长即可【解答】解:延长CD,交AE于点E,可得DE丄AE,占E在RtAAED中,AE=BC=40m,ZEAD=45°,ED=AEtan45°=20l'2m,在RtABC中,ZBAC=30°,BC=40m,AAB=40'369.3m,则CD=EC-ED=AB-ED=403-20.龙29.3m.答:这两座建筑物AB,C
25、D的高度分别为69.3m和29.3m.【点评】此题考查了解直角三角形的应用-仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23【分析(1)连接OD,由DE是®O的切线,得出ZODE=90°,ZADO+ZBDE=90°,由ZACB=90°,得出ZCAB+ZCBA=90。,证出ZCAB=ZADO,得出ZBDE=ZCBA,即可得
26、出结论;(2) 证出CB是OO的切线,得出DE=EC,推出EC=EB,再由OA=OC,得出OEAB,即可得出结论.【解答】证明:(1)连接OD,如图所示:DE是OO的切线,.ZODE=90°,AZADO+ZBDE=90°,VZACB=90°,AZCAB+ZCBA=90°,VOA=OD,AZCAB=ZADO,AZBDE=ZCBA,AEB=ED,DBE是等腰三角形;(2)VZACB=90°,AC是OO的直径,ACB是OO的切线,:DE是OO的切线,:DE=EC,:EB=ED,:EC=EB,*:OA=OC,:OEAB,:COEsCAB.【点评】本题考
27、查了切线的判定与性质、相似三角形的判定、等腰三角形的判定与性质、平行线的判定与性质等知识,熟练掌握切线的判定与性质是解题的关键.924【分析】(1)分0WxW30;30WxW70;70WxW100三段求函数关系式,确定第2段利用待定系数法求解析式;(2) 利用w=yx-p和(1)中y与x的关系式得到w与x的关系式;(3) 把(2)中各段中的w分别减去0.3x得到w与x的关系式,然后根据一次函数的性质和二次函数的性质求解.【解答】解:(1)当0WxW30时,y=2.4;当30WxW70时,设y=kx+b,z、/xf30k+b=2.4_ZRfk=-O.01把(30,2.4),(70,2)代入得“,
28、解得,、,170k+b=2|.b=2.7.°.y=-0.01x+2.7;当70WxW100时,y=2;(2) 当0WxW30时,w=2.4x-(x+1)=1.4x-1;当30WxW70时,w=(-0.01x+2.7)x-(x+1)=-0.01x2+1.7x-1;当70WxW100时,w=2x-(x+1)=x-1;(3) 当0WxV30时,w,=1.4x-1-0.3x=1.1x-1,当x=30时,w,的最大值为32,不合题意;当30WxW70时,wz=-0.01x2+1.7x-1-0.3x=-0.01x2+1.4x-1=-0.01(x-70)+48,当x=70时,w的最大值为48,不合题意;当70WxW100时,w,=x-1-0.3x=0.7x-1,当x=100时,w,的最大值为69,此时0.7x-1255,解得x±80,所以产量至少要达到80吨.【点评】本题考查了一次函数的应用:学会建立函数模型的方法;确定自变量的范围和利用一次函数的性质是完整解决问题的关键.25.【分析】(1)设函数解析式为y=ax2+bx+c,将点A(-2,2),C(0,2),D(2,0)代入解析式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五年级上册数学教学设计-第三单元第1课时 因数与倍数 北师大版
- 一年级下册数学教案-综合实践 趣味拼摆| 青岛版(五四学制)
- 学习2025年雷锋精神六十二周年主题活动实施方案 (3份)-54
- 2025年河南测绘职业学院单招职业适应性测试题库带答案
- 2025年广西安全工程职业技术学院单招职业技能测试题库含答案
- 2025年广东金融学院单招职业适应性测试题库完整
- 2025年贵州航天职业技术学院单招职业技能测试题库一套
- 2025福建省安全员考试题库及答案
- 2025年度幼儿园教职工被辞退劳动权益保护合同
- 2025年度幼儿园实习教师培养与就业服务协议
- 安全环保法律法规
- 2025年湖南环境生物职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 建设工程质量安全监督人员考试题库含答案
- 电气控制技术项目化教程 第2版 课件 项目1、2 低压电器的选用与维修、电动机直接控制电路
- 2025年上半年山东人才发展集团限公司社会招聘易考易错模拟试题(共500题)试卷后附参考答案
- 小儿肠系膜淋巴结护理查房
- 2025年度文化创意产业园区入驻及合作协议3篇
- 【MOOC期末】《大学体育射箭》(东南大学)中国大学慕课答案
- 2024年山东理工职业学院高职单招语文历年参考题库含答案解析
- 三叉神经痛的护理问题
- 2025北京平谷初三(上)期末数学真题试卷(含答案解析)
评论
0/150
提交评论