平行四边形判定,题型归纳_第1页
平行四边形判定,题型归纳_第2页
平行四边形判定,题型归纳_第3页
平行四边形判定,题型归纳_第4页
平行四边形判定,题型归纳_第5页
免费预览已结束,剩余8页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、对角线取值范围问题(同三角形第三边中线取值范围)平行四边形一边长为10,一条对角线长为6,则它的另一条对角线长a的取值范围为()A.4<a<16B,14<a<26C,12<a<20D,8<a<32平行四边形的判定:1:定义法:两组对边分别平行的四边形是平行四边形2:一组对边平行且相等的四边形是平行四边形3:两组对边分别相等的四边形是平行四边形4:对角线相互平分的四边形是平行四边形14 .平行四边形的判定(一)定义法:两组对边分别平行的四边形是平行四边形例题1:如图,四边形ABC比平行四边形,连接AC.过点A作AHBC于点E;过点C作CF/AE交A

2、D于点F;求证:四边形AECF为平行四边形练习:1、已知:如图,ABC是等边三角形,DE分别是BA、CA的延长线上的点,且AD=AE连接ED并延长至ijF,使彳#EF=EC,连接AF、CF、BE.(1)求证:四边形BCFD是平行四边形;证明:(1)VABC为等边三角形,且AE=AD,由题可知/AED=/ADE=ZEAD=60°EF/BC,又=EC=EF,.ECF为等边三角形,即/EFC=/EDB=60°,CF/BD一四边形BCFD为平行四边形.2、如图:平行四边形ABCLfr,MN分别是ABCD的中点,AN与DM®交于点P,BN与CMf交于点Q试说明PQ与MNS相

3、平分。3、如图,在四边形ABCD中,AH、CGBE、FD分别是/A、/C、/B、/D的角平分线,且BE/FD,AH/CG证明四边形ABCD为平行四边形.15 .平行四边形的判定(二):一组对边平行且相等的四边形是平行四边形例题1:如图,在ABCM,延长CD到E,使D&CD连接BE交AD于点F,交AC于点Go求证:AF=DF【答案】解:(1)证明:如图1,连接BDAE, 四边形ABCD平行四边形, .AB/CDAB=CD> .DE=CDAB/DEAB=DE,四边形ABD既平行四边形。,AF=DF。练习:1、如图,已知平行四边形ABCD过A作AMLBC于M,交BD于E,过C作CNLA

4、D于N,交BD于F,连结AF、CE(1) 求证:四边形AECF为平行四边形;【答案】(1)证明二四边形ABC比平行四边形(已知),BC/AD(平行四边形的对边相互平行)。又AM,BC(已知),.AMLAD.CNLAD(已知),,AM/CN.AE/CE又由平行得/ADEMCBD又AD=BC(平行四边形的对边相等)。在4ADE和4CBF中,/DAEWBCF=90,AD=CB/ADEWFBC.AD且ACBICASA,,AE=CF(全等三角形的对应边相等)。四边形AECF为平行四边形(对边平行且相等的四边形是平行四边形)2、如图:在口ABC叶,E,G,F,H分别是四条边上的点,且AECF,BGDH试说

5、明:EF与GH相互平分.例题2:如图,ABCffiADEtB是等边三角形,点D在BC边上,AB边上有一点F,且BF=DC连接EF、EB.(1)求证:AB草AACD(2)求证:四边形EFC北平行四边形练习:1、如图1,在4OAB中,/OAB=90,/AOB=30,OB=8.以OB为一边,在OA陟卜作等边三角形OBC,DOB的中点,连接AD并延长交OC于E.求点B的坐标.求证:四边形ABCE1平行四边形.如图2,将图1中的四边形ABCOff叠,使点C与点A重合,折痕为FG,求OG勺长.【解析】(1)vZAOB=30,OB=8,AB=4,OA=43,B(小区4).(2);OB久等边三角形,.OC=O

6、B=8.VD点为OB的中点,;OD=4.又;AD是RtOAB斗边的中线, .AD=OB=OD, ./ODA=180-2X30°=120°,./EDO=60.又/EOD=60,.OEM等边三角形,OE=4JE(0,4),CE=4,CE=ABRvCE/AB, 四边形abceW四边形.(3)ga=gc;.gA=gC.即oG+oAoc-ogIqe+K'Jp-og)2,.og=i.16.平行四边形的判定(三):两组对边分别相等的四边形是平行四边形例题1:如图,点A是直线l外一点,在l上取两点RC,分另1J以AC为圆心,BGAB长为半径画弧,两弧交于点D,分别连接ARARCD,

7、则四边形ABCDH定是1】A.平行四边形B.矩形C.菱形D.梯形练习:1、如图,点AB、C是坐标平面内不在同一直线上的三点,画出以A、B、C三点为顶点的平行四边形.例题2:如图所示,试证明:四边形PONMH平行四边形.练习:1、在YABCM,分别以AD,BC为边向内作等边ADEffi等边ABCF连接BE,DF.求证:四边形BED笈平行四边形.2、四边形的四条边长分别是a、b、c、d,其中a、c为对边,且满足,则这个四边形一定是()A.平行四边形B.两组对角分别相等的四边形C.对角线互相垂直的四边形D.对角线相等的四边形3、等边八ABC中,点D在BC上,点E在AB上,且CD=BE以AD为边作等边

8、ADF,如图.求证:四边形CDFE是平行四边形.4、如图所示,以ABC的三边为边在BC的同侧分别作三个等边三角形ABRBCEACF,猜想:四边形ADEF是什么四边形,试证明你的结论.证明:四边形ADEF是平行四边形.连接EDEF,ABD.ABCBACF分别是等边三角形,AB=BDBC=BE/DBA土EBC=60°.丁./DBE=/ABC.ABCADBE.同理可证ABCFEC,AB=EF,AC=DEvAB=ADAC=AF,AD=EEDE=AF.四边形ADEF是平行四边形17 .平行四边形的判定(四):对角线相互平分的四边形是平行四边形例题1:已知A(2,3)B(-2,5),A、B点关于

9、原点的对称点分别为C、D,依次连接A、B、C、D点,则四边形ABC此什么四边形?例题2、如图,在平行四边形ABCM,连接对角线BD,过AC两点分别作AEBD于E点,CFBD于F点,求证:四边形AEC皿平行四边形练习:1、如图是某市一公园的路面示意图,其中,ABC虚平行四边形,BEAC,DFAC,E、F是垂足,GH分别是BGAD的中点,连接EGGF、FH,HE为公园中小路,问小明从B地经E地,H地到F地,与小强从D地经F地,G地到E地,谁的路程远?2、如图所示,在YABCD43,E、F是对角线AC上两点,且AF=CE,求证:四边形BEDF是平行四边形.3、如图,在YABCD43,点MN是对角线A

10、C上的点,且AM=CN,DE=BF,求证:四边形MFNE平行四边形18 .坐标平行四边形知识点总结:若A、RC为已知点,则求一点D与他们构成平行四边形,则有三个点D1、D2、D3,则有D1=A+B-CD2=A+C-BD3=B+C-A(按照中点坐标公式和对角线相互平分性质)例题1、已知点A(-1,0),B(2,-1),D(0,1).请在直角坐标系中找一点C与A、BCD四点构成平行四边形,则点C的坐标为-练习:1、若以A(,0),B(2,0),C(0,1)三点为顶点要画平行四边形,则第四个顶点不可能在【】A.第一象限B.第二象限C.第三象限D.第四象限2、已知点D与点A(8,0),B(0,6),C

11、(a,-a)是一平行四边形的四个顶点,则CD长的最小值为.例题2、如图,在平面直角坐标系中,已知RtAOB的两条直角边0A、08分别在y轴和x轴上,并且OAOB的长分别是方程x27x120的两根(OA<0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.(1)求A、B两点的坐标。(2)当t=2时,在坐标平面内,是否存在点M,使以A、P、QM为顶点的四边形是平行四边形*存在,请直接写出M点的坐标;若不存在,请说明理由练习:1、如图BCx轴于C点,BA例于人点,B(3,4),

12、四边形ABC加直线EF折叠,点A落在BC边上的G处,E、F分别在ADAB上,且AF=2.(1)求G点坐标;(2)求直线EF解析式;(3)点N在x轴上,直线EF上是否存在点M使以MN、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由19 .动点平行四边形例题1:在四边形ABCD中,AD/BC且AD>BC,BC=6cmP、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,几秒后四边形ABQP是平行四边形?练习:1、如图,在ABC中,AB=AC,射线AM/BC,点P从点A出发沿射线AM运动,同时点Q从点B出发沿射

13、线BC运动,设运动时间为t(s).(1)连接PQAQPC,当PQ经过AC的中点D时,求证:四边形AQCP是平行四边形;|一(2)若BC=6cm,点P速度为1cm/s,点Q的速度为4cm/s,填空:当t为s时,以A、Q、GP为顶点的四边形是平行四边形;(1)证明::D为AC中点,AD=CDvAM/BC,丁./PAC=/ACB,在ADP和CDQ中,/PAD=/DCQAD=CD/ADP=/CDQ.ADPzXCDQ(ASA),PD=DQ又=AD=CD一四边形AQCP是平行四边形;(2)当Q在线段BC上,AP=QC时,以A、QC、P为顶点的四边形是平行四边形,|由题意得:t=6-4t,解得:t=,当Q在

14、C的右边时,AP=QC时,以A、。C、P为顶点的四边形是平行四边形,由题意得:t=4t-6,解得:t=2,故答案为:或2;2、如图,/ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,彳BEXAD),垂足为E,连接CE,过点E作EFLCE,交BD于F.(1)求证:BF=FD;(2)点D在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时/A的度数.解:(1)在RtAEB中,.AC=BC-1二CE=AB2CB=CE丁./CEB=/CBEvZCEF=/CBF=90°,丁./BEF=/EBF,EF=BF.vZBEF+ZF

15、ED=90°,/EBD+ZEDB=90°,丁./FED=/EDF,vEF=FD.BF=FD.(2)能.理由如下:若四边形ACFE为平行四边形,贝UAC/EF,AC=EF,BC=BE.BA=BD/A=45°.当ZA=450时四边形ACFE为平行四边形.3、将一副三角尺如图拼接:含30°角的三角尺(ABC的长直角边与含450角的三角尺(ACI)的斜边恰好重合.已知A五2<3,P是AC上的一个动点.(1)当点P运动到/ABC的平分线上时,连接DP求DP的长;(2)当点P在运动过程中出现PD=BC时,求此时/PDA勺度数;(3)当点P运动到什么位置时,以D

16、,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时UDPBQ勺面积.34、直线y-x6与坐标轴分别父与点A、B两点,点P、Q同时从O点出发,4同时到达A点,运动停止。点Q沿线段OA运动,速度为每秒1个单位长度,点P沿O-B-A运动。(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,OPQ勺面积为S,求出S与t之间的函数关系式。(3)当S翌时,求出点P的坐标,并直接写出以点QP、Q为顶点的平行四边形5的第四个顶点M的坐标。20.性质和判定综合例题1、如图E、F是四边形ABCM对角线AC上的两点,AF=CEDF=BEDF/BE求证:(1)/AF阴/CEB",(2)

17、四边形ABC虚平行四边形.解:(1)因为DF/BE,所以/AFD=/CEB又因为AF=CEDF=BE,所以AF阴/CEB(2)由(1)AAFtDCEB知AD=BC/DAF=/BCE,所以AD/BC,所以四边形ABCD平行四边形.例题2:如图,在ABC中,ZACB=90°,D是BC的中点,DHBGC由DBF为邻边作平行四边形BDEF又APBE(点P、E在直线AB的同侧),如果BD1AB,那4么APBC的面积与ABC面积之比为【】A.1B.3C.1D.-4554【答案】a【考点】平行四边形的判定和性质。【分析】过点P作PH/BC交AB于H,连接CHPF,PE .APBE:四边形APE配平

18、行四边形。.PEAB, 四边形BDEF平行四边形,.EFBD .EF/ARaP,E,F共线。设BD=a1.八-BD-AB,二PE=AB=4aPF=PE-EF=3a4vPH/BGHB(=SPBCo.PF/AB,二四边形BFPH平行四边形。.BH=PF=3a,/SahbcSaabc=BHAB=3a4a=3:4,Sapbc:Saabc=3:4。故选D。练习:1、如图,ABC是等边三角形,P是三角形内任一点,PDAB,PEBC,PF/AC,若ABC周长为12,求PD+PE+P的化来源:学纲纲Z&X&XaK2、图3是某城EC±BGBA/DE,BD/AE,EF=FC甲、乙两人同时从B站乘车到F站,甲乘1市部分街道示意图,图中AF/BC,路车,路线是B-A一E一F,乙乘2路车,路线是B-AC-F.假设两车速度相同,途中耽误时间相同,那么谁先到达F点,?请说明理由.来源:Z§xx§E3、已知:如图,四边形ABC北平行四边形,DEY(1)求证:乙AEMCFN21世纪教育网(2)求证:四边形BMDN!平行四边形.【答案】证明:(1)二.四边形ABCD是平行四边形,.AB/DC,AD/BG/E=/F,/DAB=BCD/EAM=FCNXvAE=CFaAAEIWACFN(ASA。(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论