人教版高中数学选修(2-2)-1.7《定积分在几何中的应用》教学课件1_第1页
人教版高中数学选修(2-2)-1.7《定积分在几何中的应用》教学课件1_第2页
人教版高中数学选修(2-2)-1.7《定积分在几何中的应用》教学课件1_第3页
人教版高中数学选修(2-2)-1.7《定积分在几何中的应用》教学课件1_第4页
人教版高中数学选修(2-2)-1.7《定积分在几何中的应用》教学课件1_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、定积分的简单应用定积分的简单应用.,.,定积分的一些简单应用定积分的一些简单应用下面我们介绍下面我们介绍定积分有着广泛的应用定积分有着广泛的应用上上事实事实求变速运动物体的位移求变速运动物体的位移梯形的面积梯形的面积边边定积分可以用来计算曲定积分可以用来计算曲我们已经看到我们已经看到定积分在几何中的应用1 . 7 . 1oxy11xy22xy 17.1图图ACDB例例1 计算由曲线计算由曲线y2=x,y=x2所围图形的面积所围图形的面积S。分析分析 首先画草图(首先画草图(1.7-1).从图从图中可以看出,所求图形的面积可中可以看出,所求图形的面积可以转化为两个曲边梯形面积的差,以转化为两个曲

2、边梯形面积的差,进而可以用定积分求面积进而可以用定积分求面积S。为。为了确定出被积函数和积分的上、了确定出被积函数和积分的上、下限,我们需要求出两条曲线的下限,我们需要求出两条曲线的交点的横坐标。交点的横坐标。.17.1,xy, xy22中阴影部分的面积所求面积为图的草图作出函数解22xy, xy解方程组.1x0 x 及得交点的横坐标为10210OABDOABCdxxdxxSSS,曲边梯形曲边梯形所求图形面积为因此1031023x31x32.313132oxy11xy22xy 17.1图图ACDBoxy510244xyx2y 27.1图图1S2 2S例例2 计算由直线计算由直线 ,曲线,曲线

3、以以及及x轴所围图形的面积轴所围图形的面积Sxy24 xy分析分析 首先画出草图(图首先画出草图(图1.7-2),),并设法把所求图形面积问题转化并设法把所求图形面积问题转化为求曲边梯形的面积问题。为求曲边梯形的面积问题。与例与例1不用的是,还需把所求不用的是,还需把所求图形的面积分成两部分图形的面积分成两部分S1和和S2,为了确定被积函数和积分的上、下限,需要求出直线为了确定被积函数和积分的上、下限,需要求出直线 与曲线与曲线 的交点的横坐标,直线的交点的横坐标,直线 与与x轴的交点。轴的交点。4 xy4 xyxy2.27.1,x2y, 4xy阴影部分的面积图所求面积为的草图曲线作出直线解解

4、方程组x2y, 4xy.4, 8x2y4xy的交点与曲线得直线所求图形的面积为故的交点为轴与,.0 , 4x4xy21SSS848440dx4xdxx2dxx2.3404x21x322x32284284234023oxy510244xyx2y 27.1图图1S2 2S.,以及积分的上、下限以及积分的上、下限被积函数被积函数再借助图形直观确定出再借助图形直观确定出草图草图一般要先画出它的一般要先画出它的平面图形的面积时平面图形的面积时在利用定积分求在利用定积分求由上面例题可以发现由上面例题可以发现思考思考 本题还有其他解法吗?如果有,请本题还有其他解法吗?如果有,请写出你的解法,并比较一下这些解法。写出你的解法,并比较一下这些解法。求下列曲线所围成的图形的面积:求下列曲线所围成的图形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论