版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、时间:45分钟基础组1.设m,n是两条不同的直线,是两个不同的平面,则下列命题正确的是()Am,n,且,则mnBm,n,且,则mnCm,n,mn,则Dm,n,m,n,则答案B解析对于A,m,n的位置关系应该是平行、相交或异面,故A不正确;对于B,由面面垂直及线面垂直的性质知,mn,故B正确;对于C,与还可以平行或相交,故C不正确;对于D,与还可以相交,所以D不正确故选B.2已知不同直线m、n及不重合平面、给出下列结论:m,n,mnm,n,mnm,n,mnm,n,mn其中的假命题有()A1个 B2个C3个 D4个答案C解析为假命题,m不一定与平面垂直,所以平面与不一定垂直命题与为假命题,中两平面
2、可以相交,与可能相交只有是真命题,因为两平面的垂线所成的角与两平面所成的角相等或互补3设l、m、n均为直线,其中m、n在平面内,则“l”是“lm且ln”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件答案A解析当l时,lm且ln.但当lm,ln时,若m、n不是相交直线,则得不到l.即l是lm且ln的充分不必要条件故选A.4已知m和n是两条不同的直线,和是两个不重合的平面,那么下面给出的条件中一定能推出m的是()A,且m Bmn,且nC,且m Dmn,且n答案B解析根据定理、性质、结论逐个判断因为,m,则m,的位置关系不确定,可能平行、相交、m在面内,故A错误;由线面垂
3、直的性质定理可知B正确;若,m,则m,的位置关系也不确定,故C错误;若mn,n,则m,的位置关系也不确定,故D错误5设平面与平面相交于直线m,直线a在平面内,直线b在平面内,且bm,则“”是“ab”的()A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件答案A解析若,因为m,b,bm,所以根据两个平面垂直的性质定理可得b,又a,所以ab;反过来,当am时,因为bm,一定有ba,但不能保证b,所以不能推出.6PA垂直于正方形ABCD所在平面,连接PB,PC,PD,AC,BD,则下列垂直关系正确的是()平面PAB平面PBC;平面PAB平面PAD;平面PAB平面PCD;平面PA
4、B平面PAC.A BC D答案A解析易证BC平面PAB,则平面PAB平面PBC.又ADBC,故AD平面PAB,则平面PAD平面PAB.7如图所示,在四棱锥PABCD中,PA底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足_时,平面MBD平面PCD.(只要填写一个你认为是正确的条件即可)答案DMPC(答案不唯一)解析由定理可知,BDPC.当DMPC时,即有PC平面MBD,而PC平面PCD,平面MBD平面PCD.8已知a、b、l表示三条不同的直线,、表示三个不同的平面,有下列四个命题:若a,b,且ab,则;若a、b相交,且都在、外,a,a,b,b,则;若,a,b,ab,则b;若a,b
5、,la,lb,l,则l.其中正确命题的序号是_答案解析在正方体A1B1C1D1ABCD中,令平面A1B1CD为,平面DCC1D1为,平面A1B1C1D1为,又平面A1B1CD平面DCC1D1CD,平面A1B1C1D1平面DCC1D1C1D1,则CD与C1D1所在的直线分别表示a,b,CDC1D1,但平面A1B1CD与平面A1B1C1D1不平行,即与不平行,故错误因为a、b相交,假设其确定的平面为,根据a,b,可得.同理可得,因此, 故正确如果两平面垂直,那么一个平面内垂直于它们交线的直线和另一个平面垂直,故正确当ab时,l垂直于平面内两条不相交直线,不能得出l,故错误9如图,在四棱锥PABCD
6、中,PA底面ABCD,ABAD,ACCD,ABC60°,PAABBC,E是PC的中点(1)证明:CDAE;(2)证明:PD平面ABE.证明(1)在四棱锥PABCD中,因为PA底面ABCD,CD平面ABCD,故PACD,ACCD,PAACA,CD平面PAC,而AE平面PAC,CDAE,(2)由PAABBC,ABC60°,可得ACPA,E是PC的中点,AEPC,由(1)知,AECD,且PCCDC,所以AE平面PCD,而PD平面PCD,AEPD,PA底面ABCD,PD在底面ABCD内的射影是AD,ABAD,ABPD,又ABAEA,综上可得PD平面ABE.10如图,已知AF平面AB
7、CD,四边形ABEF为矩形,四边形ABCD为直角梯形,DAB90°,ABCD,ADAFCD2,AB4.(1)求证:AC平面BCE;(2)求三棱锥EBCF的体积解(1)证明:过点C作CMAB,垂足为M,因为ADDC,所以四边形ADCM为矩形,所以AMMB2,又AD2,AB4,所以AC2,CM2,BC2,所以AC2BC2AB2,所以ACBC,因为AF平面ABCD,AFBE,所以BE平面ABCD,所以BEAC.又BE平面BCE,BC平面BCE,且BEBCB,所以AC平面BCE.(2)因为AF平面ABCD,所以AFCM,又CMAB,AF平面ABEF,AB平面ABEF,AFABA,所以CM平面
8、ABEF.VEBCFVCBEF××BE×EF×CM×2×4×2.11.如图,四边形ABCD为正方形,QA平面ABCD,PDQA,QAABPD.(1)证明:PQ平面DCQ;(2)求棱锥QABCD的体积与棱锥PDCQ的体积的比值解(1)证明:由条件知四边形PDAQ为直角梯形,因为QA平面ABCD,QA平面PDAQ,所以平面PDAQ平面ABCD,交线为AD.又四边形ABCD为正方形,DCAD,所以DC平面PDAQ,又PQ平面PDAQ,所以PQDC.在直角梯形PDAQ中可得DQPQPD,则PQQD.又DCQDD,所以PQ平面DCQ.
9、(2)设ABa.由题设知AQ为棱锥QABCD的高,所以棱锥QABCD的体积V1a3.由(1)知PQ为棱锥PDCQ的高,而PQa,DCQ的面积为a2,所以棱锥PDCQ的体积V2a3.故棱锥QABCD的体积与棱锥PDCQ的体积的比值为1.12如图,在直角梯形ABCD中,ABCD,ABAD,且ABADCD1.现以AD为一边向梯形外作矩形ADEF,然后沿边AD将矩形ADEF翻折,使平面ADEF与平面ABCD垂直(1)求证:BC平面BDE;(2)若点D到平面BEC的距离为,求三棱锥FBDE的体积解(1)证明:在矩形ADEF中,EDAD,因为平面ADEF平面ABCD,所以ED平面ABCD,所以EDBC.又
10、在直角梯形ABCD中,ABAD1,CD2,BDC45°,所以BC,在BCD中,BDBC,CD2,所以BD2BC2CD2,所以BCBD,所以BC平面BDE.(2)由(1)得,平面DBE平面BCE,作DHBE于点H,则DH平面BCE,所以DH.在BDE中,BD·DEBE·DH,即·DE(),解得DE1.所以VFBDEVBEFD××1×1×1.能力组13.已知平面与平面相交,直线m,则()A内必存在直线与m平行,且存在直线与m垂直B内不一定存在直线与m平行,不一定存在直线与m垂直C内不一定存在直线与m平行,但必存在直线与
11、m垂直D内必存在直线与m平行,不一定存在直线与m垂直答案C解析如图,在平面内的直线若与,的交线a平行,则有m与之垂直但却不一定在内有与m平行的直线,只有当时才存在14如图所示,在直三棱柱ABCA1B1C1中,BCAC,AC1A1B,M,N分别为A1B1,AB的中点,给出下列结论:C1M平面A1ABB1;A1BAM;平面AMC1平面CNB1.其中正确结论的个数为()A0 B1C2 D3答案D解析由于ABCA1B1C1为直三棱柱,所以A1AC1M.由B1C1A1C1,M为A1B1的中点,得C1MA1B1.又AA1A1B1A1,所以C1M平面A1ABB1,所以正确因为C1M平面A1ABB1,所以C1
12、MA1B.又AC1A1B,C1MAC1C1,所以A1B平面AMC1,所以AMA1B,所以正确由AMB1N,C1MCN,可得平面AMC1平面CNB1,所以正确故正确结论共有3个15如图,过底面是矩形的四棱锥FABCD的顶点F作EFAB,使AB2EF,且平面ABFE平面ABCD,若点G在CD上且满足DGGC.(1)求证:FG平面AED;(2)求证:平面DAF平面BAF.证明(1)因为DGGC,ABCD2EF,ABEFCD,所以EFDG,EFDG.所以四边形DEFG为平行四边形,所以FGED.又因为FG平面AED,ED平面AED,所以FG平面AED.(2)因为平面ABFE平面ABCD,平面ABFE平面ABCDAB,ADAB,AD平面ABCD,所以AD平面BAF,又AD平面DAF,所以平面DAF平面BAF.16在直三棱柱ABCA1B1C1中,AC4,CB2,AA12,ACB60°,E、F分别是A1C1、BC的中点(1)证明:平面AEB平面BB1C1C;(2)证明:C1F平面ABE;(3)设P是BE的中点,求三棱锥PB1C1F的体积解(1)证明:在ABC中,AC2BC4,ACB60°,AB2,AB2BC2AC2,ABBC,由已知ABBB1,且BCBB1B,可得AB平面BB1C1C,又AB平面ABE,平面ABE平面BB1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论