




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、恒成立问题”与“存在性问题”的基本解题策略一、恒成立问题”与存在性问题”的基本类型恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:a>f(x)恒成立=aaf(xmax;a<f(x)恒成立二aWf(x温2、能成立问题的转化:a>f(x)能成立=aaf(x温;a<f(x瘴成立=a<f(xax3、恰成立问题的转化:a>f(x庐M上恰成立仁a>f(x)的解集为Ma>f(x卢M上恒成立a<f(x河CrM上恒成立另一转化方法:若xwD,f(x)之A在D上恰成立,等价于f(x)在D上的最小值fmin(x)=A,若xD,f(x)<B在D上恰
2、成立,则等价于f(x)在D上的最大值fmax(x)=B.4、设函数f(x卜g(x),对任意的xiWb,b】,存在x2WC,d,使得f(x1心g(x2),则fmin(x)>gmin(x)5、设函数f(x卜g(x),对任意的x1Wb,b,存在x2WC,d,使得f(x1)<g(x2),则fmax(x)<gmax(x)6、设函数f(x卜g(x),存在XiWa,b,存在x2Wb,d】,使得f(Xi)>g(x2),则fmax(x巨gmin(x)7、设函数f(x1g(x),存在XiWa,b,存在X2Wb,d】,使得f(x1)<g(X2),则fmin(xHgmax(x)8、设函数
3、f(x)、g(x),对任意的Xiwb,b,存在X2wb,d,使得f(x1尸g(x2),设f(x)在区间a,b上的值域为A,g(x)在区间c,d上的值域为B,则AuB.9、若不等式f(x)>g(x市区间D上恒成立,则等价于在区间D上函数y=f(x)和图象在函数y=g(x)图象上方;10、若不等式f(x)<g(x)在区间D上恒成立,则等价于在区间D上函数y=f(x)和图象在函数y=g(x)图象下方;恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有:在给定区间上某关系恒成立;某函数的定义域为全体实数R;某不等式
4、的解为一切实数;某表达式的值恒大于a等等恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。因此也成为历年高考的一个热点。恒成立问题在解题过程中大致可分为以下几种类型:一次函数型;二次函数型;变量分离型;根据函数的奇偶性、周期性等性质;直接根据函数的图二、恒成立问题解决的基本策略大家知道,恒成立问题分等式中的恒成立问题和不等式中的恒成立问题。等式中的恒成立问题,特别是多项式恒成立问题,常简化为对应次数的系数相等从而建立一个方程组来解决问题的。(一)两个基本思想解决恒成
5、立问题”思路1、m之f(x)在xwD上恒成立um之f(x)max思路2、mWf(x)在x乞D上恒成立umWf(x)min如何在区间D上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数f(x)的最值。这类问题在数学的学习涉及的知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现的试题类型,希望同学们在日常学习中注意积累。(二)、赋值型一一利用特殊值求解等式恒成立问题等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求
6、得例1.如果函数y=f(x)=sin2x+acos2x的图象关于直线x=对称,那么a=()A.1B.-1C.、,2D.-.2.略解:取x=0及x=三,则f(0)=f(三),即a=-1,故选B.此法体现了数学中从一般到特殊的转化思想.例(备用).由等式x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+b2(x+1)2+b3(x+1)+b4定义映射f:(a1,a2,a3,a4)一b+b2+b3+b4,则f:(4,3,2,1)一()A.10B.7C.-1D.0略解:取x=0,贝Ua4=1+b+b2+b3+b4,又a4=1,所以b1+b2+b3+b4=0,故选D(三)分清基本类型
7、,运用相关基本知识,把握基本的解题策略1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷给定一次函数y=f(x)=ax+b(ay=f(x)在m,n内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于f(m)>0If(n)>0f(m)<0同理,若在m,n内恒有f(x)<0,则有YLf(n)<0例2.对于双地|a|<2的皿实数a,求使不等x+1>2a+x恒成立的x的取值范围.分析:在不停式中阿T两个字母:x及a,关键将a视作自变量,在于该把生看成是一个变量,另一个作为常数.显然可则出述问题即可转化为在-2
8、,2内关于a的次函数大于0恒成立的问题.解:原不等式转化为(x1)a+xx2x+1>0在冏区飞设f(a:=(xm1)时恒成立,omnn2一,,一,一一,a+x-2x+1,则f(a)在-2,2上恒氏于0,故有:kAjf(2)>02x2x-4x30-10解得:x>蜒x<1x>1m£x<-1x<-1或x>3.即xC(8,1)u(3,+0°)此类题本质上是利用了一次函数在区间m,n上的图象是一线段,故只需保证该线段两端点均在x轴上方(或下方)即可.2、二次函数型涉及到二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些
9、具体的方法,在今后的解题中自觉运用。(1)若二次函数y=ax2+bx+c(aw向于0恒成立,则有2>0且A<0(2)若是二次函数在指定区间上的恒成立问题,可以利用韦达定理以及根的分布知识求解。类型1:设f(x)=ax2+bx+c(a00)在R上恒成立,(1) f(x)>0在xwr上恒成立仁a>0且A<0;(2) f(x)xeR上恒成立ua<0且也<0。类型2:设f(x)=ax2+bx+c(a=0)在区间%B上恒成立rrrb<_b_<Bb(1)当a>0时,f(x)A0在*W二邛上恒成立w,2a<"或一一2a一或厂2a&g
10、t;f(:)0";0f)0f(x)<0在xwot,P上恒成立仁f(:)<0f():0当a<0时,f(x)>0在xw。,B上恒成立0_b_f(x)<0在xwct,P上恒成立仁22ag或f(:)0,f(J02a或42af(:)0.:0f(-)<0类型3:设f(x)=ax2+bx+c(a#0)在区间(-8,闻上恒成立。f(x)>0=a>0且A<0或-b/2a>oMf(c()>0f(x)<0ya<0且A<0或-b/2a>aMf(c()<0类型4:设f(x)=ax2+bx+c(a#0)在区间o(,+
11、8比恒成立。f(x)>0ya>0,A<0或-b/2a<aS.f(a)>0f(x)<0=a<0,.<0或-b/2a<:且f(阕<0例3.若函数f(x)=;(a21)x2+(a1)x+2一的定义域为r,求实数a的取值范围.a1222.分析:该题就转化为被开万数(a-1)x+(a-1)x+之0在R上恒成立问题,并且注意对二次项系数a1的讨论.解:依题意,当xWR时,222(a-1)x+(a1)x+之0恒成立,a1a2-1=0一所以,当a2-1=0,即当'时,a=1,a1:0,此时222(a7)x(aT)x=1_0,.a=1.a1当a
12、2-10,a2-1#0时,即当222时,'."-:=(a-1)2-4(a2-1)0a1有aa21一9n1caM9,综上所述,f(x)的定义域为R时,a=1,92-10a9M0,例4.已知函数f(x)=x2+ax+3a,在R上f(x)之0恒成立,求a的取值范围分析:y=f(x)的函数图像都在X轴及其上方,如右图所示:略解:A=a2-4(3-a)=a2+4a-12<0,'.-6<a<2第3页变式1:若xw_2,2时,f(x)20恒成立,求a的取值范围.解析一.(零点分布策略)本题可以考虑f(x)的零点分布情况进行分类讨论,分无零点、零点在区间的左侧、零点
13、在区间的右侧三种情况,即>0-a<-2请2或f(-2)占0f(2)之00二2一2一,即a的取值范围为卜7,2.f(-2)_0f(2),0解法二分析:(运用二次函数极值点的分布分类讨论)要使xw12,2时,f(x)之0恒成立,只需f(x)的最小值g(a)>0即可.略解:(分类讨论)/*.aaf(x)=Ix+一12;2_亘_a十3,令f(x)在一2,2上的最小值为g(a).4当a<2,即2j.a不存在.下4时,g(a)=f(-2)=7-3a>0a<|又':a>4r.a即YEaW4时,g(a)=f(22a尸a+30,-6<a<2又4WaW
14、44-4<a<2a当一一>2,即a<-4时,g(a)=f(2)=7+a至02综上所述,-7£aE2.二a之一7又:a<-4,一7<a<-4变式2:若xw-2,2时,f(x)之2恒成立,求a的取值范围.解法一:分析:题目中要证明f(x)>2在-2,2上恒成立,若把2移到等号的左边,则把原题转化成左边二次函数在区间1-2,2】时恒大于等于0的问题.例2已知f(x)=x2+ax+3a,若x引-2,2,f(x)之0恒成立,求a的取值范围.略解:f(x)=x2+ax+3a220,即f(x)=x2+ax+1-a>0在1-2,2】上成立.=a2
15、-41-a-0-2-2,2-a-22.2,2一=a-4(1-a)>0f(2)之0<f(-2)之0a5a2或-2综上所述,-5Ma£2、.2-2.解法二:(运用二次函数极值点的分布)入“a5-当一一<_2,即2>4时,g(a)=f(2)=73a22,aW气4,f二a不存在.232aaa当/w_a42,即KaM4时,g(a)=f(a)=_3a+322,224a当一一二2,即a时,g(a)=f(2)=7+a之2,2综上所述-5<a<2,2-2.此题属于含参数二次函数,求最值时,对于轴变区间定的情形,对轴与区间的位置进行分类讨论;还有与其相反的,轴动区间定
16、,方法一样.对于二次函数在R上恒成立问题往往采用判别式法(如例4、例5),而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上的最值问题3、变量分离型若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。运用不等式的相关知识不难推出如下结论:若对于x取值范围内的任何一个数都有f(x)>g(a)恒成立,则g(a)<f(x)min;若对于x取值范围内的任何一个数,都有f(x)<g(a)恒成立,则g(a)>f(x)max.(其中f(x)max和
17、f(x)min分别为f(x)的最大值和最小例5.已知三个不等式x24x十3<0,x26x十8<0,2x29x+m<0.要使同时满足的所有x的值满足,求m的取值范围.略解:由得2<x<3,要使同时满足的所有x的值满足,即不等式2x29x+m<0在xw(2,3)上恒成立,即m<2x2十9x在xe(2,3)上恒成立,又2x2+9x在xw(2,3)上大于9,所以m<9例6.函数f(x)是奇函数,且在1,1上单调递增,又f(1)=1,若f(x)Wt22at+1对所有的aw-1,1都成立,求t的取值范围.解:据奇函数关于原点对称,f(1)=1,又f(x)在1
18、,1上单调递增f(x)max=f(1)=1:f(x)<t2-2at+1对所有的aw1,1者B成立.因此,只需t2-2at+1大于或等于f(x)在-1,1上的最大值1,又*,对所有a-1,1都成立,即关于a的一次函数在卜1,1上大于或等于0恒成立,即:t(-二,-202,二)利用变量分离解决恒成立问题,主要是要把它转化为函数的最值问题补例.已知f(x)=x|x-a|+b,xeR.若b<0,且对任何xw0,1不等式f(x)<0恒成立,求实数a的取值范围.解:当x=0时,a取任意实数,不等式f(x)<0恒成立,故只需考虑x0,11,此时原不等式变为|x-a|:二二bxbb即x
19、a:x-xx故b)max二a:(x-b)min,x0,1xxbb又函数g(x)=x+在(0,1】上单调递增,所以(x+)max=g(1)=1十b;xx对于函数h(x)=x-b,x0,11xb当b<-1时,在(0,1】上h(x)单倜递减,(xb)min=h(1)=1b,又1bA1+b,x所以,此时a的取值范围是(1+b,1b).当1Wbc0,在(0,1】上,h(x)=x222口,x当*=匚3时,(xb)min=24,此时要使a存在,x必须有1+b<2-b即一1Mb<26"一3,此时a的取值范围是(1+b,2;b)-1<b<0综上,当b<1时,a的取值
20、范围是(1+b,1b);当一1Wb<2j23时,a的取值范围是(1+b,2/F);当2j23Eb<0时,a的取值范围是0.4、根据函数的奇偶性、周期性等性质若函数f(x)是奇(偶)函数,则对一切定义域中的x,f(-x)=-f(x)(f(-x)=f(x)恒成立;若函数y=f(x)的周期为T,则对一切定义域中的x,f(x)=f(x+T)恒成立。5、直接根据图象判断若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果。尤其对于选择题、填空题这种方法更显方便、快捷。例7.对任意实数x,不等式x+1-x-2aa恒成立,求实数a的取值范围
21、.分析:设y=|x+1|-|x-2|,对任意实数x,不等式x+1-x-2aa恒成立即转化为求函数y=|x+1|-|x-2|的最小值,画出此函数的图象即可求得a的取值范围.解:令y=x+1x2=12x1x<-1-1:二X:二2x.二2在直角坐标系中画出图象如图所示,由图象可看出,对任意实数x,不等式x+1-x-2>a恒成立,只需ac-3.故实数a的取值范围是(注:本题中若将对任意实数x,不等式x十1x2a恒成立,对任意实数x,不等式x+1-x-2<a恒成立,求实数a,同样由图象可得a>3;对任意实数x,不等式x+1+|x-2>a恒成立,求实数a,构造函数,画出图象,
22、得a<3.利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围例8.设常数aCR,函数f(x)=3|x|+|2x-a|,g(x)=2-x.若函数y=f(x)与y=g(x)的图像有公共点,则a的取值范围为。解:1)a<=0x<=a/2<=0时,f(x)=-3x+(-2x+a)=-5x+aa/2<=x<=0时,f(x)=-3x+(2x-a)=-x-ax>=0时,f(x)=3x+(2x-a)=5x-a,最小值为-a<=2则与g(x)有交点,即:-2<=a&
23、lt;=0。2)a>0x<=0时,f(x)=-3x+(-2x+a)=-5x+a0<=x<=a/2时,f(x)=3x+(-2x+a)=x+ax>=a/2时,f(x)=3x+(2x-a)=5x-a最小值a<=2时与g(x)有交点,即:0<a<=2综上所述,-2<=a<=2时f(x)=3|x|+|2x-a|与g(x)=2-x有交点。三、在恒成立问题中,主要是求参数的取值范围问题,是一种热点题型,介绍一些基本的解题策略,在学习中学会把问题分类、归类,熟练基本方法。(一)换元引参,显露问题实质1、对于所有实数x,不等式恒成立,求a的取值范围。解
24、:因为的值随着参数a的变化而变化,若设,则上述问题实质是当t为何值时,不等式恒成立这是我们较为熟悉的二次函数问题,它等价于求解关于t的不等式组:。解得,即有,易得2、设点P(x,y)是圆x2十(y-1)2=4上任意一点,若不等式x+y+c0恒成立,求实数c的取值范围。(二)分离参数,化归为求值域问题3、若对于任意角总有成立,求m的范围。解:此式是可分离变量型,由原不等式得,又,则原不等式等价变形为恒成立。cos21根据边界原理知,必须小于f(e)=的最小值,这样问题化归为怎样求的最小值。cos?2因为f(-)=cos21cos12即时,有最小值为0,故(三)变更主元,简化解题过程4、若对于,方
25、程都有实根,求实根的范围。解:此题一般思路是先求出方程含参数m的根,再由m的范围来确定根x的范围,但这样会遇到很多麻烦,若以m为主元,则由原方程知,得解之得或2.,一、,一一一5、当aE1时,若不等式x十(a6)x+93a>0恒成立,求x的取值范围。(四)图象解题,形象直观6、设xW(0,4,若不等式Jx(4x)>ax恒成立,求a的取值范围。解:若设yi=Jx(4-x),则为上半圆。设,为过原点,a为斜率的直线。在同一坐标系内作出函数图象依题意,半圆恒在直线上方时,只有时成立,即a的取值范围为O7、当xW(1,2)时,不等式(x-1)2<logax恒成立,求a的取值范围。解:
26、设y1=(x-1)2,y2=logax,则y1的图象为右图所小的抛物线要使对一切xW(1,2),y1<y2恒成立,显然a>1,并且必须也只需当x=2时y2的函数值大于等于y1的函数值。故loga2>1,1<a:2.8、已知关于x的方程lg(x2+4x)-lg(2x-6a-4)=0有唯一解,求实数a的取值范围。分析:方程可转化成lg(x2+4x)=lg(2x-6a-4),从而得x2+4x=2x-6a-4>0,注意到若将等号两边看成是二次函数y=x2+4x及一次函数y=2x-6a-4,则只需考虑这两个函数的图象在x轴上方恒有唯一交点即可。解:令y=x2+4x=(x+2
27、)2-4,y2=2x-6a-4,yi的图象为一个定抛物线y2的图象是k=2,而截距不定的直线,要使yi和y2在x轴上方有唯一交点,则直线必须位于11和12之间。(包括11但不包括12)当直线为li时,直线过点(-4,0),此时纵截距为-8-6a-4=0,a=_2;2 2当直线为12时,直线过点(0,0),纵截距为-6a-4=0,a=a的范围为2,)3 3(五)合理联想,运用平几性质9、不论k为何实数,直线与曲线恒有交点,求a的范围。分析:因为题设中有两个参数,用解析几何中有交点的理论将二方程联立,用判别式来解题是比较困难的。若考虑到直线过定点A(0,1),而曲线为圆,圆心C(a,0),要使直线
28、恒与圆有交点,那么定点A(0,1)必在圆上或圆内。解:,C(a,0),当时,联想到直线与圆的位置关系,则有点A(0,1)必在圆上或圆内,即点A(0,1)到圆心距离不大于半径,则有(六)分类讨论,避免重复遗漏10、当时,不等式恒成立,求x的范围。解:使用的条件,必须将m分离出来,此时应对进行讨论。当时,要使不等式恒成立,只要,解得当时,要使不等式恒成立,只要当时,要使恒成立,只有。综上得解法2:可设将m视为主变元,即将元不等式化为:,用一次函数知识来解较为简单。我们可以用改变主元的办法,22m(x-1)-(2x-1)<0,;令f(m)=m(x-1)一(2x-1),则2EmE2时,f(m)&
29、lt;0恒成立,所以只需广一._22f(-2)<0即厂2(x-1)-(2x-1)<0J(2)<02(x2-1)-(2x-1)<0x的范围是-171.3x=(,)。此类题本质上是利用了一次函数在区间m,n上的图象是一线段,故只需保证该线段两22端点均在x轴上方(或下方)即可211、当1<x<3时,不等式x2ax+6>0恒成立,求实数a的取值范围。解:ax32x当1<x<3时,x3->2J-=6,当个=0,即x=J6时等号成立。2x22x故实数a的取值范围:a<<6(七)构造函数,体现函数思想12、(1990年全国高考题)设,
30、其中a为实数,n为任意给定的自然数,且,如果时有意义,求a的取值范围。解:本题即为对于,有恒成立。这里有三种元素交织在一起,结构复杂,难以下手,若考虑到求a的范围,可先将a分离出来,得恒成立。构造函数,则问题转化为求函数在上的值域。由于函数上是单调增函数,则在上为单调增函数。于是有的最大值为:从而可得(A)利用集合与集合间的关系在给出的不等式中,若能解出已知取值范围的变量,就可利用集合与集合之间的包含关系来求解,即:Im,nEf(a),g(afl,则f(a产m且g(a庐n,不等式的解即为实数a的取值范围。例13、当xwT,3仙寸3,logax<1恒成立,求实数a的取值范围。解:1-1:l
31、ogax<1,1(1)当a>1时,一a<x<a,则问题转化为T,3kl工,a!3aa-311a>31a3(2)当0<a<1时,11L11a<x(一,则问题转化为.一,3三a,一a131a.,1a-310:a_1综上所得:0MaW一或a233四、其它类型恒成立问题能成立问题有时是以不等式有解的形式出现的。第10页2a1、已知函数f(x)=x-2ax+1,g(x)=,其中a>0,x#0.x对任意xiW1,2,x2W2,4,都有f(xi)>g(x2)恒成立,求实数a的取值范围;【分析:】思路、对在不同区间内的两个函数f(x)和g(x)分别求
32、最值,即只需满足fmin(x)>gmaXx)即可.简解:令n(a)=gmax(x)=a/2;令m(a)=fmin(x),f(x)=(x-a)2+1-a2,故(1)对称轴x=a<1,即或0<a<1时,m(a)=fmin(x)=f(1)=2-2a,由m(a)>n(a)解得a<4/5,(注意到a的范围)从而得a的范围:0<a<4/5;(2)对称轴x=a>2时,m(a)=fmin(x)=f(2)=5-4a,由m(a)>n(a)解得a<10/9,(注意到a的范围)从而得a无解:;117.-1-17.(3)对称轴x=aC1,2时,m(a)=
33、fmin(x)=f(a)=2-2a,由m(a)>n(a)解得a>或2<,(汪息44到a的范围)从而得a的范围1<aW2:;综合(1)(2)(3)知实数a的取值范围是:(0,4/5)U1,2:'-.x2、已知两函数f(x)=x2,g(x)=l-i-m,对任意Xiw0,2,存在x?=1,2,使得f(x)>g(x2),则实0数m的取值范围为解析:对任意X1w卜2】,存在X2w1,2,使得f(xjgd)等价于g(x)=口;-m在1,2上的最小值-m241 _1不大于f(x)=x在0,2】上的最小值0,既mW0,,m至一4 4题型二、主参换位法(已知某个参数的范围,
34、整理成关于这个参数的函数)题型三、分离参数法(欲求某个参数的范围,就把这个参数分离出来)题型四、数形结合(恒成立问题与二次函数联系(零点、根的分布法)五、不等式能成立问题(有解、存在性)的处理方法若在区间D上存在实数x使不等式f(x)>A成立,则等价于在区间D上f(x)maxAA;若在区间D上存在实数X使不等式f(x)<B成立,则等价于在区间D上的f(x1in<B.1、存在实数X,使得不等式|x+31x1Ma23a有解,则实数a的取值范围为。解:设f(x尸x+35x1,由f(x炉a23a有解,=a2-3a至f(x后,又x+3+x1>(x+3Nx-1。=4,.二a23a&
35、gt;4,解得a之4或a<-1o1、求使关于p的不等式x2十px十1<p+2x在pe-2,2有解的x的取值范围。解:即关于p的不等式(x1)p+x22x+1<0有解,设f(p)=(x1)p+x22x+1,则f(p)在-2,2上的最小值小于0。(1)当x>1时,f(p)关于p单调增加,故fmin(p)=f(-2)=x2-4x+3<0,解得1<x<3;(2)当x<1时,f(p)关于p单调减少,故fmin(p)=f(2)=x2-1<0,解得-1<x<1;当X=1时,f(p)=0,故fmin(p)=f(p)<0不成立。综合(1)(
36、2)(3)知实数x的取值范围是:(-1,1)U(1,3)例、设命题P:x1,x2是方程x2-ax-2=0的二个根,不等式|m2-5m-3|>桃2|对任意实数aC卜1,1恒成立;命题Q:不等式|x-2m|-|x|>1(m>0)有解;若命题P和命题Q都是真命题,求m的值范围。解:(1)由P真得:区X2|=v'a2+8,注意到a在区间-1,1,|x1X2|max=3,由于|m2-5m-3|A|-x2|对任意实数aC-1,1恒成立,故有|m2-5m-3|>|X1-X2|max=3解得:me-1或俏6或0WmC5由Q真,不等式|x-2m|-|x|>1(m>0)
37、有解,得(|x-2m|-|x|)max=2m>1,解得:m>1/2由于(1)(2)都是相公命题,故m的值范围:1/2<mW5或6.举例1(1)已知不等式4x-a-2x+2>0对于xW-1,y)恒成立,求实数a的取值范围.第11页(2)若不等式4x-a2x+2>0对于a它(_g,3恒成立,求实数x的取值范围分析:(1)由4xa2x+2>0得:a<2x+马对于xw_1,=)恒成立,因2x之1,所以2x+马之2J2,2x22x当2x=版时等号成立.所以有a<242.xx(2)汪思到4-a2+2>0对于aw(-8,3恒成立是关于a的一次不等式.不妨
38、设f(a)=2xa+(4x+2),则f(a)在aw(笛,3上单调递减,则问题等价于f(3)>0,所以4x32x+2>0=2x>2或2x<1,则x取值范围为(3,0)U(1,五c).小结:恒成立与有解的区别:恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一体。不等式f(xKM对xWI时恒成立ufmax(x)<M?,xI。即f(x)的上界小于或等于M;不等式f(xJ<M对x1时有解yfmin(x)<M?,x。或f(x)的下界小于或等于M;不等式f(x)>M对xWI时恒成立ufmin(x)>M?,xW
39、I。即f(x)的下界大于或等于M;不等式f(x>M对xWI时有解yfmax(x)>M,xWI.。或f(x)的上界大于或等于M;高中数学难点强化班第四讲(140709)课后练习答案:一.填空选择题(每小题6分,共60分)1、对任意的实数x,若不等式x+1-x-2Aa恒成立,那么实数a的取值范围。答案:|x+-|x-2|之-|(x+1)-(x-2)|=-3,故实数a的取值范围:a<-32、不等式sin2x-4sinx虫a<0有解,则a的取值范围是解:原不等式有解=a>sin2x-4sinx+1=(sinx2j-3<sinx<1质解,而(sinx-2J-31
40、=-2,所以a>-2o3.若对任意xWR,不等式|x|2ax恒成立,则实数a的取值范围是()(A)a<-1(B)|a|<1(C)|a|<1(D)a>1解析:对VxwR,不等式|x|之ax恒成立则由一次函数性质及图像知1WaW1,即|a|W1。答案:选B4.当xW(1,2)时,不等式2x+mx+4<0恒成立,则m的取值范围是2解析:当x51,2)时,由x2+mx+4<0得m<一x44.令f(x)=x+,则易知f(x)在(1,2)上是x4)minA-5mW-5.xxx减函数,所以x/1,2时f(x)max=f(1)=5,则(5.已知不等式ax23x+
41、(a+1)>x2xa+1对任意aW(0,+°0)都成立,那么实数x的取值范围第12页为.分析:已知参数a的范围,要求自变量x的范围,转换主参元x和a的位置,构造以a为自变量x作为参数的一次函数g(a),转换成vaw(0,+s),g(a)>0恒成立再求解。解析:由题设知“ax2-3x+(a+1)>x2-x-a+1对Vaw(0,+妙)都成立,即a(x2+2)-x2-2x>0对22Vaw(0,十8)都成立。设g(a)=(x+2)a-x-2x(awR),则g(a)是一个以a为自变量的一次函数。;x2+210恒成立,则对VxwR,g(a)为R上的单调递增函数。所以对Va
42、w(0,+g),g(a)>0恒成立的充分必要条件是g(0)之0,-x2-2x>0,a2WxE0,于是x的取值范围是x|-2Mx<0。6.已知函数f(x)=2mW-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,则实数m的取值范围是()A.(0,2)B,(0,8)C.(2,8)D.(巴0)分析:f(x)与g(x)的函数类型,直接受参数m的影响,所以首先要对参数进行分类讨论,然后转换成不等式的恒成立的问题利用函数性质及图像解题。1斛析:当m=0时,f(x)=-8x+1>0在(-«,一)上恒成立,而g(x)=08在R上恒
43、成立,显然不满足题意;(如图1)当m<0时,g(x)在R上递减且g(x)=mx>0只在(一空,0)上恒成立,0图1图2图3而f(x)是一个开口向下且恒过定点(0,1)的二次函数,显然不满足题意。当m>0时,g(x)在R上递增且g(x)=mx>0在(0,十比)上恒成立,而f(x)是一个开口向上且恒过定点(0,1)的二次函数,要使对任一实f(x师g(x)的值至少有一个为正数则只需f(x)a0在(,0上恒成立。(如图3)4-m4-m则有22m<0或之0解得4<m<8或0<mW4,22m:=4(4-m)-8m:0综上可得0<m<8即m(0,8)。故选B。7、已知两函数f(x)=7x2-28xc,g(x)=6x2-24x+21。(1)对任意xW0,3l都有f(x)Eg(x)成立,那么实数c的取值范围c刃;(2)存在x=U,3,使f(xg(x城立,那么实数c的取值范围c225:(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 20405.5-2025失禁者用尿液吸收剂聚丙烯酸酯高吸水性粉末第5部分:在盐溶液中用称重法测定吸水率
- 度畜牧养殖基地承包合同书
- 四川成都典型离婚合同范例
- 兼职导师劳动合同
- 6 将相和(教学设计)2024-2025学年统编版语文五年级上册
- Module 2 Unit 6 E-friends Period 1(教学设计)-2024-2025学年沪教牛津版(深圳用) 英语六年级上册
- 全新融资租赁合同法律文本
- 派遣厨师劳动合同
- Module 10 Unit 2 Go straight on!(教学设计)-2024-2025学年外研版(三起)英语六年级上册
- 度礼品销售合同书
- 临床中药学-课件
- 2023年山东科技职业学院单招综合素质考试笔试模拟试题及答案解析
- 警察行政法课件
- 水利工程施工质量与安全管理知识讲稿ppt版(共243)
- 幼儿园实习指导课件
- 幼儿园绘本故事:《昆虫运动会》 课件
- 数学与生活小报
- 挖掘数学专业课程的思政元素-以空间解析几何为例
- 儿科学教学课件肾病综合征
- 2023高中物理步步高大一轮 第四章 专题强化七 圆周运动的临界问题
- Q∕GDW 12152-2021 输变电工程建设施工安全风险管理规程
评论
0/150
提交评论