版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四章第四章 化工过程系统的优化化工过程系统的优化 4.1概述概述 4.2化工过程系统优化问题基本概念化工过程系统优化问题基本概念 4.3化工过程系统最优化问题的类型化工过程系统最优化问题的类型 4.4化工过程中的线性规划问题化工过程中的线性规划问题 4.5化工过程中的非线性规划问题化工过程中的非线性规划问题 4.6 化工过程大系统的优化化工过程大系统的优化 4.7 不可行路径联立模块法不可行路径联立模块法数学模型是对实际过程系统进行模拟的基础。数学模型是对实际过程系统进行模拟的基础。所谓系统仿真(或系统模拟)实际上就是建立所谓系统仿真(或系统模拟)实际上就是建立过程的数学模型过程的数学模型建
2、立数学模型不仅仅是为了对过程进行模拟,建立数学模型不仅仅是为了对过程进行模拟,其最终目的是要对过程进行优化其最终目的是要对过程进行优化 古老的问题古老的问题胡不归胡不归 排队打水排队打水 在化工装置的设计及操作中,人们一直都在化工装置的设计及操作中,人们一直都在自觉或不自觉地应用优化的概念在自觉或不自觉地应用优化的概念 在流程结构给定的条件下,在流程结构给定的条件下, 对象:过程系统参数对象:过程系统参数在实际生产中不断调节反应器的温度、压力以在实际生产中不断调节反应器的温度、压力以保证原料的转化率最大;保证原料的转化率最大;在精馏塔设计中选择适当的回流比,以保证较在精馏塔设计中选择适当的回流
3、比,以保证较少的热量消耗和塔板数;少的热量消耗和塔板数; 流程方案的优化流程方案的优化 在多种可行方案中找出费用最小的流程结构,保证该在多种可行方案中找出费用最小的流程结构,保证该方案满足安全、环保、易操作等方面的要求方案满足安全、环保、易操作等方面的要求 确定冷、热物流的匹配方式,以便充分利用系统内部确定冷、热物流的匹配方式,以便充分利用系统内部热量,降低公用工程消耗热量,降低公用工程消耗 首先要分析问题属于哪种类型首先要分析问题属于哪种类型: 连续操作还是间歇操作,稳态过程还动态过程,连续操作还是间歇操作,稳态过程还动态过程, 是单目标优化还多目标优化,有约束问题还是无是单目标优化还多目标
4、优化,有约束问题还是无约束问题约束问题。 然后选择建立何种模型进行优化:然后选择建立何种模型进行优化: 机理模型还是统计模型或智能模型等机理模型还是统计模型或智能模型等 在数学上,求解最优化问题就是要找到一组使得在数学上,求解最优化问题就是要找到一组使得目标函数目标函数J J达到最大或最小的决策变量达到最大或最小的决策变量 求最小值的方法完全可以用于求解最大值问题求最小值的方法完全可以用于求解最大值问题maxminJJ(4-1) 服从于不等式约束条件:服从于不等式约束条件:(4-2) 及及n 个等式约束条件:个等式约束条件:(4-3) 为为n维优化变量向量维优化变量向量)(minminyFJ
5、0)(yg0)(yeTnyyyy),(21 目标函数(又称性能函数,评价函数)是最优化问目标函数(又称性能函数,评价函数)是最优化问题所要达到的目标。两组不同的决策,其好坏优劣要题所要达到的目标。两组不同的决策,其好坏优劣要以它们使目标函数达到多少为评判标准。以它们使目标函数达到多少为评判标准。 系统的产量最大;系统的产量最大; 系统的经济收益最大;系统的经济收益最大; 系统的能量消耗最小;系统的能量消耗最小; 系统的原料利用率最高;系统的原料利用率最高; 系统的操作成本最低;系统的操作成本最低; 系统的投资成本最低;系统的投资成本最低; 系统的稳定操作周期最长系统的稳定操作周期最长 还有多目
6、标问题还有多目标问题2 2 优化变量优化变量 对于对于问题,优化变量向量就是问题,优化变量向量就是过程变量向量。过程变量向量包括过程变量向量。过程变量向量包括和和 决策变量决策变量等于系统的自由度,它们是系统变量中等于系统的自由度,它们是系统变量中可以独立变化以改变系统行为的变量;可以独立变化以改变系统行为的变量; 状态变量状态变量是决策变量的函数,它们是不能独立变是决策变量的函数,它们是不能独立变化的变量,服从于描述系统行为的模型方程化的变量,服从于描述系统行为的模型方程 w表示决策变量,表示决策变量,x表示状态变量,则过程系统模表示状态变量,则过程系统模型方程确定了型方程确定了x与与w的函
7、数关系的函数关系(4-4) 通常称之为状态方程,它表示的是系统状态变量通常称之为状态方程,它表示的是系统状态变量与决策变量之间的关系。与决策变量之间的关系。 状态方程数目与状态变量状态方程数目与状态变量x的维数相同。的维数相同。0),(xwf 有时过程变量向量还包括有时过程变量向量还包括S维单元内部变量向量维单元内部变量向量z ,因此,状态方程的一般形式为:因此,状态方程的一般形式为:(4-5) 一般,过程系统优化问题中,决策变量数仅占整个过一般,过程系统优化问题中,决策变量数仅占整个过程变量中的一小部分。这一特性在缩小优化搜索时是程变量中的一小部分。这一特性在缩小优化搜索时是很有用的很有用的
8、0),(zxwf 当过程变量向量当过程变量向量y的各分量为一组确定的数值时,称的各分量为一组确定的数值时,称为一个为一个 变量变量y的取值范围一般都的取值范围一般都 要给要给 以一的限制,这种限制以一的限制,这种限制称为称为 状态方程限制了状态变量与决策变量间的关系,因状态方程限制了状态变量与决策变量间的关系,因此,也可以看作是一种约束条件。对于设计参数优化此,也可以看作是一种约束条件。对于设计参数优化问题,设计规定要求也是一种约束条件问题,设计规定要求也是一种约束条件。 约束条件有约束条件有和和 过程系统参数优化的不等式约束条件包括过程变量的过程系统参数优化的不等式约束条件包括过程变量的不等
9、式约束条件和不等式设计规定要求不等式约束条件和不等式设计规定要求(4-6) 等式约束条件由等式设计规定要求和尺寸成本关系式等式约束条件由等式设计规定要求和尺寸成本关系式两部分组成,分别表示为两部分组成,分别表示为(4-7)(4-8) 状态方程式(包括各种衡算方程、联结方程等):状态方程式(包括各种衡算方程、联结方程等):(4-9)0),(xwg0),(xwh0),(zxwc0),(zxwf 满足约束条件的方案集合,构成了最优化问题的满足约束条件的方案集合,构成了最优化问题的,记作,记作R 可行域中的方案称为可行域中的方案称为 每组方案每组方案y为为n维向量,它确定了维向量,它确定了n维空间中的
10、一维空间中的一个点个点 因此,因此,w决策变量向量(决策变量向量(w1,wr);x状态变量向量(状态变量向量(x1,xm)z过程单元内部变量向量(过程单元内部变量向量(z1,zs)F目标函数目标函数fm维流程描述方程组(状态方程)维流程描述方程组(状态方程)cs维尺寸成本方程组维尺寸成本方程组hl维等式设计约束方程维等式设计约束方程g不等式设计约束方程不等式设计约束方程),(xwFMin0),(zxwf0),(zxwc0),(xwh0),(xwg对于上述优化问题,变量数为对于上述优化问题,变量数为m m+ +r r+ +s s,等式约束方,等式约束方程数为程数为m m+ +l l+ +s s,
11、问题的自由度为,问题的自由度为d=变量数方程数变量数方程数r l 若若l l=0=0,自由度等于决策变量数,自由度等于决策变量数r r; 若若l=rl=r,自由度等于零,此时最优化问题的解是唯,自由度等于零,此时最优化问题的解是唯一的(即等于约束方程的交点),没有选择最优一的(即等于约束方程的交点),没有选择最优点的余地;点的余地; 若若l l r r,则最优化问题无解。由此可见,则最优化问题无解。由此可见,l l r r是最是最优化问题有解的必要条件之一优化问题有解的必要条件之一 求一个受不等式约束的最优化问题求一个受不等式约束的最优化问题 服从于约束条件:服从于约束条件: 解:可行域是由解
12、:可行域是由: 三边所围成的区域三边所围成的区域,最优解只能是可行域内与最优解只能是可行域内与点(点(3,2)距离最近的点)距离最近的点(2,1)1)2() 3(),(min222121xxxxf03221 xx012x01x03221 xx012x01x 对于过程机理清楚的问题,一般采用对于过程机理清楚的问题,一般采用进行优化,其优点是结果比较精确进行优化,其优点是结果比较精确 机理模型的约束方程是通过分析过程的物理、机理模型的约束方程是通过分析过程的物理、化学本质和机理,利用化学工程学的基本理论化学本质和机理,利用化学工程学的基本理论建立的描述过程特性的数学模型及边界条件建立的描述过程特性
13、的数学模型及边界条件 形式往往比较复杂,具有大型稀疏性特点,需形式往往比较复杂,具有大型稀疏性特点,需要用特殊的最优化方法进行求解,求解方法选要用特殊的最优化方法进行求解,求解方法选择不当,会影响优化迭代计算速度择不当,会影响优化迭代计算速度 对于过程机理不很清楚,或机理模型复杂,难对于过程机理不很清楚,或机理模型复杂,难以建立数学方程组或方程组求解困难的问题,以建立数学方程组或方程组求解困难的问题,可通过建立可通过建立进行优化。进行优化。 其中常用的就是其中常用的就是 直接以实测数据为依据,只着眼于输入输出直接以实测数据为依据,只着眼于输入输出关系,不考虑过程本质,对数据进行数理统计关系,不
14、考虑过程本质,对数据进行数理统计分析从而得到过程各参数之间的函数关系。函分析从而得到过程各参数之间的函数关系。函数关系通常比较简单。数关系通常比较简单。 优点是模型关系式简单优点是模型关系式简单,不需要特殊的最优化,不需要特殊的最优化求解算法。求解算法。 缺点是外延性能较差缺点是外延性能较差 也是一种黑箱建模方也是一种黑箱建模方法,广泛用于过程系统模拟和优化问题。法,广泛用于过程系统模拟和优化问题。在许多方面优于一般的统计回归模型。在许多方面优于一般的统计回归模型。 适用于任何生产过程系统,寻优速度较适用于任何生产过程系统,寻优速度较快,具有自学习、自适应能力(因此也快,具有自学习、自适应能力
15、(因此也称为智能模型),尤其适用于多目标优称为智能模型),尤其适用于多目标优化问题化问题 需要大量的样本数据,而且存在局部极需要大量的样本数据,而且存在局部极值问题。值问题。 无约束最优化与有约束最优化无约束最优化与有约束最优化 线性规划与非线性规划线性规划与非线性规划 单维最优化和多维最优化单维最优化和多维最优化 解析法与数值法解析法与数值法 可行路径法和不可行路径法可行路径法和不可行路径法 在寻求最优决策时,如果对于决策变量及状态变在寻求最优决策时,如果对于决策变量及状态变量无任何附加限制,则称为量无任何附加限制,则称为 问题的最优解就是目标函数的极值。这类问题比问题的最优解就是目标函数的
16、极值。这类问题比较简单,求解方法是最优化技术的基础较简单,求解方法是最优化技术的基础 在建立最优化模型方程时,若直接或间接的对决在建立最优化模型方程时,若直接或间接的对决策变量施以某种限制,则称为策变量施以某种限制,则称为。又。又可分为可分为。 求解方法是通过把有约束最优化问题转化成无约求解方法是通过把有约束最优化问题转化成无约束最优化模型进行求解束最优化模型进行求解 - 当目标函数及约束条件当目标函数及约束条件均均为线性函数时,称为为线性函数时,称为,或线性规划。比较成熟,或线性规划。比较成熟 当目标函数或约束条件中当目标函数或约束条件中至少有一个至少有一个为非线性函为非线性函数时,则称为数
17、时,则称为,或非线性规划。过,或非线性规划。过程系统参数的优化通常都属于程系统参数的优化通常都属于 由于非线性规则问题求解困难,有时将其近似地由于非线性规则问题求解困难,有时将其近似地线性化,用比较成熟的线性规划技术求解线性化,用比较成熟的线性规划技术求解 根据优化变量的数目,可将问题分为根据优化变量的数目,可将问题分为。 只有一个可以调节的决策变量的单维最优化问题只有一个可以调节的决策变量的单维最优化问题是最简单的典型问题。是最简单的典型问题。 研究单维最优化的方法具有基本的意义,复杂的研究单维最优化的方法具有基本的意义,复杂的多维最优化问题往往可以转化为反复应用单维最多维最优化问题往往可以
18、转化为反复应用单维最优化方法来解决优化方法来解决 根据解算方法,则可分为根据解算方法,则可分为和和。 解析法又称为间接最优化方法。只适用于目标函解析法又称为间接最优化方法。只适用于目标函数数(或泛函或泛函)及约束条件有显函数表达的情况。及约束条件有显函数表达的情况。 要求把一个最优化问题用数学方程式表达,然后要求把一个最优化问题用数学方程式表达,然后用导数法或变分法得到最优化的必要条件,通过用导数法或变分法得到最优化的必要条件,通过对必要条件方程求解得到问题的最优解。对必要条件方程求解得到问题的最优解。 古典的古典的等都属于解析法。等都属于解析法。 数值法数值法又称为直接最优化方法,或优选法。
19、又称为直接最优化方法,或优选法。 不要求目标函数为各种变量的显函数表达式,利不要求目标函数为各种变量的显函数表达式,利用函数在某一局部区域的性质或一些已知点的数用函数在某一局部区域的性质或一些已知点的数值,逐步搜索、逼近,最后达到最优点。值,逐步搜索、逼近,最后达到最优点。 对于有约束最优化问题,视其如何处理约束条对于有约束最优化问题,视其如何处理约束条件可分为件可分为和和。的整个搜索过程是在可行域内进行的整个搜索过程是在可行域内进行的,对变量的每次取值,约束条件均必须满足的,对变量的每次取值,约束条件均必须满足 对于每一次优化迭代计算(统计模型除外)均对于每一次优化迭代计算(统计模型除外)均
20、必须解算一次过程系统模型方法(即状态方程)必须解算一次过程系统模型方法(即状态方程)f f,也就是做一次全流程模拟计算。同时,要,也就是做一次全流程模拟计算。同时,要解算式(解算式(4-64-6)至()至(4-84-8)。)。 这类方法简单可靠,但计算量很大。这类方法简单可靠,但计算量很大。的不要求必须在可行域内进行,可的不要求必须在可行域内进行,可以从不可行域向最优解逐步逼近,但在最优解处以从不可行域向最优解逐步逼近,但在最优解处必须满足条件。必须满足条件。 在这类方法中,所有的过程变量同时向使目标函在这类方法中,所有的过程变量同时向使目标函数最优而又能满足所条件的方向移动。数最优而又能满足
21、所条件的方向移动。 这类方法的求解过程有可能不稳定,但计算量比这类方法的求解过程有可能不稳定,但计算量比可行路径法显著减少。计算量少的主要原因是比可行路径法显著减少。计算量少的主要原因是比可行路径少一层迭代环节可行路径少一层迭代环节 对于不同的阶段和对象,化工过程系统对于不同的阶段和对象,化工过程系统最优化问题可分为最优化问题可分为 包括包括和和,就是把最优化技术应用于过程,就是把最优化技术应用于过程系统模型,寻求一组使目标函数达到最优,同系统模型,寻求一组使目标函数达到最优,同时又满足各项设计规定要求的决策变量(即设时又满足各项设计规定要求的决策变量(即设计变量)。计变量)。 根据最优设计方
22、案可计算单元设备的尺寸根据最优设计方案可计算单元设备的尺寸 实际生产操作必须根据环境和条件的变化来实际生产操作必须根据环境和条件的变化来调节决策变量(即操作变量),从而使整个调节决策变量(即操作变量),从而使整个过程系统处于最佳状态,也就是目标函数达过程系统处于最佳状态,也就是目标函数达到最优。这就是到最优。这就是 如:通过操作参数优化计算,可以找到对应于如:通过操作参数优化计算,可以找到对应于系统下的精馏塔最佳回流比、操作压力、反应系统下的精馏塔最佳回流比、操作压力、反应器最佳反应温度和再循环流量等等。器最佳反应温度和再循环流量等等。 如果操作参数与生产装置的测试系统连接在一如果操作参数与生
23、产装置的测试系统连接在一起,随时根据检测仪表送来的信息进行优化计起,随时根据检测仪表送来的信息进行优化计算,然后将计算结果信息直接送往控制系统,算,然后将计算结果信息直接送往控制系统,则称为则称为“在线操作优化在线操作优化” 过程系统的设计参数优化和操作参数优化过程系统的设计参数优化和操作参数优化的区别在于优化对象不同,前者优化的是的区别在于优化对象不同,前者优化的是设计变量,后者优化的是操作变量,设计变量,后者优化的是操作变量, 但就应其数学本质而言并什么本质上的区但就应其数学本质而言并什么本质上的区别,优化的对象都是决策变量别,优化的对象都是决策变量 当用机理模型描述过程系统的参数优化问题
24、时,当用机理模型描述过程系统的参数优化问题时,模型方程分为模型方程分为和和。 稳态集中参数优化模型由代数方程组成,稳态集中参数优化模型由代数方程组成,(4-10)(流程描述方程)(流程描述方程)(尺寸,成本方程)(尺寸,成本方程)(等式设计约束)(等式设计约束)(不等设计约束)(不等设计约束)),(xwFMin0),(zxwf0),(zxwc0),(xwh0),(xwg动态优化模型中引入了时间变量,过程变量、目标动态优化模型中引入了时间变量,过程变量、目标函数和约束条件均可为时间变量的函数。集中参数函数和约束条件均可为时间变量的函数。集中参数的动态优化模型,通常由常微分代数方程组成的动态优化模
25、型,通常由常微分代数方程组成(4-11)微分形式状态方程微分形式状态方程不等式约束和不等式设计规定方程不等式约束和不等式设计规定方程等式状态程及等式设计规定方程等式状态程及等式设计规定方程初始条件初始条件 ),(),(),( minmin0fttffttxsdtttwtxFJ ),(),()(ttwtxfdttdx 0),(),(ttwtxg 0),(),(ttwtxc )(00 xtx动态优化模型一般适用于解决动态过程(如动态优化模型一般适用于解决动态过程(如间歇过程、开停车过程等)的优化设计和优间歇过程、开停车过程等)的优化设计和优化操作问题化操作问题(1) 找到找到 w(t)的最优变量规
26、律,使得在规定时间内到达)的最优变量规律,使得在规定时间内到达x(t) 的指定值的系统规模最小的指定值的系统规模最小 ;(2) 系统规模已定,找到系统规模已定,找到w(t),使一定时间内),使一定时间内x(tf ) 值为值为最大;最大;(3) 系统规模已定,找到系统规模已定,找到w(t),使得达到),使得达到x(t )的指定值的的指定值的时间最短。时间最短。 通常适用于稳态过程系统设计通常适用于稳态过程系统设计参数优化和离线操作参数优化。从控制论的角参数优化和离线操作参数优化。从控制论的角度,称稳态系统优化为离散系统优化。度,称稳态系统优化为离散系统优化。 由于动态模型描述的是时间连续系统,故
27、从控由于动态模型描述的是时间连续系统,故从控制论的角度称其为连续系统优化。动态优化模制论的角度称其为连续系统优化。动态优化模型与稳态优化模型的主要区别在于前者的解不型与稳态优化模型的主要区别在于前者的解不是一组简单的数值,而是时间的函数是一组简单的数值,而是时间的函数 间歇式理想混合反应器的最优操作,间歇式理想混合反应器的最优操作, 假假设反应器内进行的是可逆放热反应,通过改变其设反应器内进行的是可逆放热反应,通过改变其冷却衬套内冷却剂的温度对反应器实现最优控制冷却衬套内冷却剂的温度对反应器实现最优控制解:描述该反应器内过程进行的基本方程为解:描述该反应器内过程进行的基本方程为 初始条件:初始
28、条件: )(),(tTtxrAdtdxA )()(),(cVCpFACpqdtdTTTtTtxrraAxtx)(000)(TtT 任务是:在给定的初始条件下,寻求任务是:在给定的初始条件下,寻求Tc随时间随时间的变化规律,使得反应物能在最短时间内达到的变化规律,使得反应物能在最短时间内达到给定的转化率。给定的转化率。 即,要选择一个随时间的温度分布即,要选择一个随时间的温度分布Tc(t),使得,使得目标函数目标函数 最小。最小。 这就是最短时间控制问题。这就是最短时间控制问题。T Tc c为操作变量,为操作变量,x xA A和和T T是状态变量。借助于最优化技术,可从上是状态变量。借助于最优化
29、技术,可从上述动态优化模型解出使得目标函数述动态优化模型解出使得目标函数J J最小的最最小的最优解,同时可得到相应的最优状态轨线优解,同时可得到相应的最优状态轨线ftfdttJ00 资源的合理分配资源的合理分配 工厂里的蒸汽、冷却水等公用工程,工厂里的蒸汽、冷却水等公用工程, 几个车间共用一种化工原料过程系统几个车间共用一种化工原料过程系统 时序问题(时序问题(Scheduling) 多组反应器中的催化剂再生多组反应器中的催化剂再生 间歇操作中流程中每个设备的运行周期间歇操作中流程中每个设备的运行周期 设备的维护和检修设备的维护和检修 多产品车间的生产运行多产品车间的生产运行 多产品生产过程的
30、排产计划多产品生产过程的排产计划 生产装置是现成的,所以只考虑加工成本变量,在生产装置是现成的,所以只考虑加工成本变量,在这种情况下,往往可以形成线性模型这种情况下,往往可以形成线性模型 线性规划是运筹学的一个重要分支。线性规划是运筹学的一个重要分支。 作为一种最优化方法,线性规划理论完整、作为一种最优化方法,线性规划理论完整、方法成熟、应用比较广泛方法成熟、应用比较广泛 线性规划是求一组非负变量,这些变量在满足一线性规划是求一组非负变量,这些变量在满足一定的线性约束条件下,使一个线性函数达到极小定的线性约束条件下,使一个线性函数达到极小或极大或极大nnxcxcxc2211max)min(或1
31、1212111),(bxaxaxann22222121),(bxaxaxannmnmnmmbxaxaxa),(221101x02x0nx01b02b0mb),(21ncccija已知常数 为了便于求解,通常要把上述线性规划为了便于求解,通常要把上述线性规划问题的一般模型转化成下面的标准形式问题的一般模型转化成下面的标准形式nnxcxcxc2211max)min(或11212111bxaxaxann22222121bxaxaxannmnmnmmbxaxaxa221101x02x0nx01b02b0mb 将求极大化为求极小将求极大化为求极小 将不等式约束化为等式约束将不等式约束化为等式约束 松弛变
32、量、剩余变量松弛变量、剩余变量 将自由变量化为非负变量将自由变量化为非负变量 将一个自由变量化为两个非负变量;或者设法在约束条将一个自由变量化为两个非负变量;或者设法在约束条件和目标函数中消去自由变量件和目标函数中消去自由变量)min()max(JJ该问题是求目标函数的极大值,将它转化该问题是求目标函数的极大值,将它转化成等价的极小形式:成等价的极小形式:32143maxxxxJ52321xxx632321xxx02x03x32143)min(xxxJ 约束条件中,约束条件中,x x1 1没有非负限制,因此没有非负限制,因此x x1 1是自由是自由变量,设变量,设 为第一个约束引入松弛变量,为
33、第二个约束引为第一个约束引入松弛变量,为第二个约束引入剩余变量,则问题化为如下标准形式入剩余变量,则问题化为如下标准形式 111xxx01x0 1x32 1143)min(xxxxJ52132 11yxxxx6322232 11yxxxx01x0 1x02x03x01y02y 也可以通过消去,将问题化成如下标准形式也可以通过消去,将问题化成如下标准形式53)min(132yxxJ422132yyxx02x03x01y02y 线性规划问题的标准数学模型也可以写成如下矩线性规划问题的标准数学模型也可以写成如下矩阵形式:阵形式:(4-14)(4-15) 如果满足式(如果满足式(4-15),则称为问题
34、的可行解,全),则称为问题的可行解,全部可行解组成问题的可行域。部可行解组成问题的可行域。 如果可行解满足式(如果可行解满足式(4-14),则此可行解称为问),则此可行解称为问题的最优解题的最优解CXJ minbAX 0X 将矩阵看成由个列向量组成,即将矩阵看成由个列向量组成,即 设设A的秩为的秩为m(m=0,称,称B为可行基,此时,称式为可行基,此时,称式(4-16)为关于可行基为关于可行基B的基本可行解的基本可行解 同样相应地将目标函数的系数向量分解同样相应地将目标函数的系数向量分解 按式按式(4-16),目标函数,目标函数J=CX也可以用非基变量也可以用非基变量线性表示:线性表示:),(
35、NBCCC ),(21mBcccC),(21nmmNcccCNNNBNNBBNBNBXCNXBbBCXCXCXXCCCX)(),(11 整理得到:整理得到: 对于线性规划问题的基对于线性规划问题的基B,若有,若有B-1b=0,则,则对应于对应于B的基本可行解的基本可行解XB是线性规划问题的最是线性规划问题的最优解,称为最优基本可行解,基优解,称为最优基本可行解,基B称为最优基。称为最优基。 若存在一个可行解,则必存在一个基本可行解。若存在一个可行解,则必存在一个基本可行解。 若存在一个最优解,则必存在若存在一个最优解,则必存在 一个最优基本一个最优基本可行解。可行解。NBNBXNBCCbBCC
36、X)(11 图解法适用于变量较少的线性规划问题。它通过作图图解法适用于变量较少的线性规划问题。它通过作图的方式,直观地显示满足约束条件的可行域和目标函的方式,直观地显示满足约束条件的可行域和目标函数的最优解。数的最优解。:用图解法求解用图解法求解212minxxJ4221xx122321 xx01x02x解:解: 将将x1、x2看作是坐标平面上的点,将前两个约看作是坐标平面上的点,将前两个约束条件写成等式,则可以在平面上画出两条件束条件写成等式,则可以在平面上画出两条件直线直线 四个约束条件围成的区域为可行域四个约束条件围成的区域为可行域, ,最优解将最优解将落在由原点、落在由原点、A A、B
37、 B、D D四个点围成的四边形内四个点围成的四边形内 目标函数是线性函数目标函数是线性函数, ,可得到一个平行直线族,可得到一个平行直线族,平行直线族上落在可行域中的点都为可行解,平行直线族上落在可行域中的点都为可行解,其中使其中使J J取最小值的点即为最优解取最小值的点即为最优解4221xx122321 xx 由定理由定理1 1、2 2可知,线性规划问题的目标函数的最小值可知,线性规划问题的目标函数的最小值(或最大值)一定在基本可行解中获得。所以,在寻(或最大值)一定在基本可行解中获得。所以,在寻找最优解时,只需要考虑基本可行解找最优解时,只需要考虑基本可行解(4-20)NBNBXNBCCb
38、BCJ)(min11NBNXBbBX110BX0NX 记:记:001ybBCB),(020101nmmBNyyyNBCCmnmmmmnmmnmmyyyyyyyyyNB2122212121111TmyyybB),(020101 代入(代入(4-20):): 式式(4-21)中每一个等式约束中含有一个且仅含中每一个等式约束中含有一个且仅含有一个基变量,而且基变量用非基变量线性表有一个基变量,而且基变量用非基变量线性表示。同样,目标函数也仅用非基变量线性表示,示。同样,目标函数也仅用非基变量线性表示,其中非基变量其中非基变量xj的系数的系数yoj=Cj-CBB-1Aj称为的检称为的检验数或相对成本系
39、数验数或相对成本系数nxyxyxyyJnmmmm022011000,min1012211111,yxyxyxyxnnmmmm2022221122,yxyxyxyxnnmmmm02211,mmnmmmmmmmyxyxyxyxn0jx 表中的第1m行对应式的m个约束方程,第0列对应于约束方程右端的常数项,第0行对应于目标函数的变形:nxyxyxyJynmmmm022011000, 求一个初始基本可行解求一个初始基本可行解 从基本可行解出发,转移到另一个目标函数值更从基本可行解出发,转移到另一个目标函数值更小的基本可行解小的基本可行解 逐步迭代计算,当目标函数值逐步迭代计算,当目标函数值 不能再减小
40、,即满不能再减小,即满足最优性条件足最优性条件C-CBB-1A=0:时,计算结束,得:时,计算结束,得到最优基本可行解到最优基本可行解 432132minxxxxJ634321xxxx32432xxx46432xxx0jx解: 最明显的可行解就是把系数为最明显的可行解就是把系数为1 1的变量留下作的变量留下作为基变量,并设其它变量为零,作非基变量。为基变量,并设其它变量为零,作非基变量。因此:因此: x x1 1=6, x=6, x5 5=3,x=3,x6 6=4 =4 非基变量非基变量x x2 2,x,x3 3,x,x4 4为为0 0432132minxxxxJ634321xxxx32543
41、2xxxx466432xxxx0jx 可行解为:可行解为: 初始可行基为单位矩阵:初始可行基为单位矩阵: 非基变量的系数(检验数):非基变量的系数(检验数): 其中:其中:TX)4 , 3 , 0 , 0 , 0 , 6(IAAAB),(651)0 , 0 , 1 (BCjBjjABCcy103121)0 , 0 , 1 (221202ABCcyB2613)0 , 0 , 1 (131303ABCcyB 对应的目标函数值对应的目标函数值 把把b放入表的第放入表的第0列,列,A1,A2,A3,A4,A5,A6放入表的放入表的1m行中,把行中,把-y00和和y0j放入表的第放入表的第0行行 最优解
42、就满足的条件是最优解就满足的条件是yj=Cj-CBB-1Aj=0,从表,从表4-2中可以看到有的不满足条件,故初始可行解不中可以看到有的不满足条件,故初始可行解不是最优解是最优解4111)0 , 0 , 1 (341404ABCcyB6100bBCyB 由于初始的基本可行解不是最优解,因此需要由于初始的基本可行解不是最优解,因此需要转移到另一个基本可行解,方法是转移到另一个基本可行解,方法是 选择出现负检验数选择出现负检验数y y0j0j最小列最小列q q作为作为 主列,本问题主列,本问题中中 q=2q=2 求最小比值求最小比值 , 选择选择出现出现 的最小行的最小行q q作为主行,本问题中作
43、为主行,本问题中q=1q=1 以为以为y ypqpq主元,用换基公式修改单纯形表主元,用换基公式修改单纯形表 循环,直至得到最优解。循环,直至得到最优解。pqpjpjyyy/iqpqpjijijyyyyy/0|/min0iqiqiyyy1mi 纯碱生产过程的重碱工段通常有十几组塔组成,这些纯碱生产过程的重碱工段通常有十几组塔组成,这些塔交替进行制碱和清洗操作,如何将塔群分组,合理塔交替进行制碱和清洗操作,如何将塔群分组,合理安排制碱和清洗时间以保证重碱产量,就构成重碱生安排制碱和清洗时间以保证重碱产量,就构成重碱生产的排产问题产的排产问题(非线性)(非线性) 一个生产多种产品的工厂,当原料成本
44、或市场价格等一个生产多种产品的工厂,当原料成本或市场价格等因素发生变化时,为了保证全年利润,也需要重新安因素发生变化时,为了保证全年利润,也需要重新安排生产计划排生产计划(线性)(线性) 对于一个函数对于一个函数f(x1,x2,xn),如果其所有的一阶导数,如果其所有的一阶导数都存在,则函数都存在,则函数f(x)的极小值的必要条件为的极小值的必要条件为 对于满足以上方程的点成为极小值的充分条件是在这对于满足以上方程的点成为极小值的充分条件是在这个点上所有二阶导偏导数均存在,而且其赫森矩阵为个点上所有二阶导偏导数均存在,而且其赫森矩阵为正定正定021nxfxfxf H是否为正定的判据:是否为正定
45、的判据:22221212212212nnnnxfxxfxxfxxfxxfxfHiiiiiHHHHD1111 这样得到一组数值这样得到一组数值D1,D2,Dn,这称为,这称为H矩阵的矩阵的主子式。如果所有的主子式。如果所有的Di0,则赫森矩阵则赫森矩阵H为正定的为正定的 根据函数存在极小值的充分必要条件,无约束的根据函数存在极小值的充分必要条件,无约束的最优化问题的求解转化为下面一组非线性方程的最优化问题的求解转化为下面一组非线性方程的求解:求解: 其中满足:其中满足:的点,就是方程组的解的点,就是方程组的解000)()()(21nxxfxxfxxf0)()()(22221nxfxfxf 这种经
46、典方法存在以下缺点这种经典方法存在以下缺点:1 1 对较复杂的问题,这种非线性方程组求解是相对较复杂的问题,这种非线性方程组求解是相当困难的当困难的2 2 由于上述条件是满足极小,而不是最小,所以由于上述条件是满足极小,而不是最小,所以找到的解可能是局部极值,而不是全局最优值找到的解可能是局部极值,而不是全局最优值3 3 这种经典方法只能用于导数连续的场合,当导这种经典方法只能用于导数连续的场合,当导数不连续时不能使用。然而,导数不连续之处,数不连续时不能使用。然而,导数不连续之处,可能正好是最小值或最大值所在之处可能正好是最小值或最大值所在之处已知目标函数已知目标函数f(x1,x2,xn),
47、服从等式约束条件:,服从等式约束条件:引入拉格朗日函数可以将这个有约束的最优化问题转化引入拉格朗日函数可以将这个有约束的最优化问题转化成无约束的最优化问题:成无约束的最优化问题:mjxxxenj, 2 , 10),(21),()()(),(21nmjjjxxxxxexfx根据无约束最优化问题的求解方法,只要函数根据无约束最优化问题的求解方法,只要函数f和约和约束束ej的一阶偏导数在所有各点均存在,则只要求解的一阶偏导数在所有各点均存在,则只要求解下列非线性方程组,就可得到最优解下列非线性方程组,就可得到最优解以上共以上共n+m个方程,个方程, 可解出可解出 及及 个未知数个未知数mjxxxen
48、injmjxexfiji, 2 , 10),(, 2 , 10211nxxx,21m,21 有一个烃类催化反应器,烃类进行压缩并有一个烃类催化反应器,烃类进行压缩并和蒸汽先充分混合后进入反应器。反应后的产物和蒸汽先充分混合后进入反应器。反应后的产物和未反应的原料通过蒸馏进行分离,使未反应的和未反应的原料通过蒸馏进行分离,使未反应的原料再循环使用。设原料加压所需的费用为每年原料再循环使用。设原料加压所需的费用为每年1000元,将原料和蒸汽混合并送入反应器的输元,将原料和蒸汽混合并送入反应器的输送费用为每年送费用为每年 元,其中元,其中为操作压力,为操作压力,为循环比。又设分离器将产物分离所需费用
49、为为循环比。又设分离器将产物分离所需费用为每年每年105R元,未反应的原料进行再循环和压缩的元,未反应的原料进行再循环和压缩的费用每年为费用每年为 元。每年的产量为元。每年的产量为107公斤。公斤。(a) 试求最优的操作压力试求最优的操作压力P和循环比和循环比R,使每年总,使每年总费用为最小费用为最小(b) 若要求的若要求的P和和R乘积为乘积为9000bar,试求最优的,试求最优的P和和R。91104PRR5105 . 1(a) 这是一个无约束最优化问题,目标函数为:这是一个无约束最优化问题,目标函数为: 对对P和和R求导数,并令其为零,得到:求导数,并令其为零,得到: 由此解得:由此解得:P
50、=1000,R=4 代入目标函数,得到每年费用为:代入目标函数,得到每年费用为: 元元 RRPJPR55104105 . 110100090100029104RPPJ0105 . 2291045PRRJ6103J 验证此解是否是极小值:将验证此解是否是极小值:将J 对对P 和和R求二阶导数,求二阶导数,在(在(1000,4)点为:)点为: 其赫森矩阵为其赫森矩阵为 此矩阵为正定矩阵,因此这一点就是极小点。此矩阵为正定矩阵,因此这一点就是极小点。239222104RPPJ2502292104PRRPJ12500039222104PRRJ1250002502502H(b) 这是一个有约束的最优化问
51、题:这是一个有约束的最优化问题:约束条件:约束条件: PR=900建立拉格朗日函数:建立拉格朗日函数:对对和和求导数,并令其为零,得求导数,并令其为零,得求解以上三个方程得到:求解以上三个方程得到:RPJPR5104105 . 21000min9)9000(105 . 2100051049PRRPPR90000105 . 20100029291045104PRPRRPRP3 .117, 6,1500RP 基本思想基本思想: 通过一个惩罚因子把约束条件连接通过一个惩罚因子把约束条件连接到目标函数上去,从而将有约束条件的最优化到目标函数上去,从而将有约束条件的最优化问题转化为无约束条件的问题问题转
52、化为无约束条件的问题 新的目标函数具有如下性质:当搜索到不可行新的目标函数具有如下性质:当搜索到不可行点时,附加一个约束惩罚项,会使目标函数变点时,附加一个约束惩罚项,会使目标函数变得很大,而且离约束条件愈远惩罚就愈大得很大,而且离约束条件愈远惩罚就愈大已知目标函数已知目标函数f,服从等式约束条件:,服从等式约束条件:mjxxxgnj, 2 , 10),(21 引入惩罚因子引入惩罚因子ki将目标函数将目标函数f转换成带罚函数的目转换成带罚函数的目标函数标函数F(x): 这样有约束的最优化问题就被转化为无约束的最这样有约束的最优化问题就被转化为无约束的最优化问题,可以用上面的方法进行求解优化问题
53、,可以用上面的方法进行求解 当当k ki i为很大的正数时,只要为很大的正数时,只要x x违反了约束条件,则违反了约束条件,则惩罚项就会变成一个很大的正值,从而使惩罚项就会变成一个很大的正值,从而使F F( (x x) )离离最小值更远。而且最小值更远。而且x x对约束条件偏离愈大,惩罚也对约束条件偏离愈大,惩罚也就愈大。就愈大。 显然,所求的显然,所求的F F( (x x) )最小值会因值的不同而不同。最小值会因值的不同而不同。k ki i值愈大,则惩罚项的权也增加,偏离约束的可值愈大,则惩罚项的权也增加,偏离约束的可能愈小。当能愈小。当k ki i很大时,则只有很大时,则只有g gi i(
54、x(x)=0)=0时才能使时才能使F F( (x x) )达到最小值,这时的解就是的解达到最小值,这时的解就是的解mjxxxgkxxxfxFnjjn, 2 , 1),(),()(22121已知目标函数为已知目标函数为 等式约束条件为:等式约束条件为:解:解:建立带有罚函数的目标函数:建立带有罚函数的目标函数:对这一新的目标函数求极小值对这一新的目标函数求极小值化简后得到:化简后得到:当当 ,若要使上式成立,必须使,若要使上式成立,必须使(5x2-5),从而得到最优解从而得到最优解x2=1,x1=422214)(xxxf0521 xx2212221)5(4)(xxkxxxF0)5(2111xxk
55、xxF0)5(42122xxkxxF0)55(422xkxk对于一般的有约束的最优化问题对于一般的有约束的最优化问题约束条件为约束条件为建立相应的带罚函数的目标函数建立相应的带罚函数的目标函数式中式中 表示取表示取gi(x)和中较小的作为和中较小的作为约束。则利用罚函数法求约束。则利用罚函数法求F(x)最小值的计算步骤最小值的计算步骤为:为:)(minxf), 2 , 1(0)(mixhi), 2 , 1(0)(njxgj 0),(min)()(),(1122mijnjixgxhkxfkxF0),(minxgj1) 给定初始点给定初始点x0及一个适当的罚因子及一个适当的罚因子k2) 求求F(x
56、)的最小点的最小点x1 ,若,若x1可接受,则计算结束。否则可接受,则计算结束。否则转向第转向第3步步3) 设设k增大的倍数为增大的倍数为a(a1),用,用ak代替原来的代替原来的k,作为新,作为新的罚因子,以的罚因子,以x1为初始点,回到第为初始点,回到第2步步 一般来说,罚函数法是一种有效的求解方法。一般来说,罚函数法是一种有效的求解方法。 缺点:把罚函数引入目标函数可能引入了二阶导数的缺点:把罚函数引入目标函数可能引入了二阶导数的不连续,因此用梯度法来搜索最小时会发生困难;不连续,因此用梯度法来搜索最小时会发生困难; 这种方法是从不可行区域逐步收敛到解的,这就要允这种方法是从不可行区域逐
57、步收敛到解的,这就要允许在不可行域进行函数估值,这可能会使程序计算失许在不可行域进行函数估值,这可能会使程序计算失败,比如试图求负数的对数或求负数的平方根等败,比如试图求负数的对数或求负数的平方根等 动态系统参数的最优化又称连续系统最优化,动态系统参数的最优化又称连续系统最优化,这是由于优化问题的解是时间这是由于优化问题的解是时间t t的连续函数的连续函数 动态系统参数优化问题的一般模型动态系统参数优化问题的一般模型 ),(),(),( minmin0fttffttxsdtttwtxFJ ),(),()(ttwtxfdttdx 0),(),(ttwtxg 0),(),(ttwtxc00)(xt
58、x初始条件: 可以看出,目标函数随状态变量和决策变量的可以看出,目标函数随状态变量和决策变量的不同而不同,就是说明目标函数是函数的函数。不同而不同,就是说明目标函数是函数的函数。 在数学上,这种函数的称为泛函,求泛值的问在数学上,这种函数的称为泛函,求泛值的问题称为变分问题。因此,连续系统的最优化问题称为变分问题。因此,连续系统的最优化问题就是一个变分问题。题就是一个变分问题。 求泛函的极小问题也是一种极值问题,对于无求泛函的极小问题也是一种极值问题,对于无约束问题,根据极值存在的充分必要条件求极约束问题,根据极值存在的充分必要条件求极值;对于有约束的最优化问题,则先利用拉格值;对于有约束的最
59、优化问题,则先利用拉格朗日函数或罚函数将其转化成无约束最优化问朗日函数或罚函数将其转化成无约束最优化问题后再求解。题后再求解。(1) 泛函极值的必要条件泛函极值的必要条件对于一个泛函对于一个泛函当函数当函数 y (x) 经微小改变后变为经微小改变后变为y1 (x),则称,则称为函数的变分,表示了为函数的变分,表示了y(x) 的微小改变。也写为的微小改变。也写为式中式中 是一个连续可微的任意函数,是一个连续可微的任意函数,是一个是一个很小的正数,当很小的正数,当 时,时,dxxxxyxyxyIxx),(),()(21)()(1xyxyy)(xy)(x0y0 若若y(x)的微小改变要求在区间的微小
60、改变要求在区间x1,x2两端固定,两端固定,即保持即保持y(x1)=y1,y(x2)=y2,则则 应满应满足足 ,或记为:,或记为: 相应于函数相应于函数y(x)的微小改变,泛函的微小改变,泛函I y (x)的的改变量为:改变量为: 将大括号内的函数的用泰勒级数展开,并略去将大括号内的函数的用泰勒级数展开,并略去的高次项得的高次项得:)(x0)()(21xx)()(21xyxydxxyyxyyxyIyxyIxxxxx,)(21dxIyIyyIxyxxyx)(21 式中式中 称为泛函称为泛函I y (x)的第一变分。泛函的第一变分。泛函 I y (x)取值的必要条件为:取值的必要条件为: 将前式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 经营餐厅合同模板
- 2024的车队承包合同范文
- 摄影场地借用合同范例
- 二零二四年度融资租赁合同租赁物及租金支付等规定3篇
- 洗煤代加工合同模板
- 爱心协会合同范例
- 二零二四年度智能硬件设备研发合同
- 电力桩基工程合同模板
- 二中会议室管理制度(2篇)
- 维修大车服务合同范例
- 设计提案范例
- 小讲课风湿科常用药物
- 中医食疗药膳学智慧树知到期末考试答案章节答案2024年四川护理职业学院
- 《工程建设标准强制性条文电力工程部分2023年版》
- 2024氢气长管拖车安全使用技术规范
- 《新疆维吾尔自治区建筑工程施工评标规则》(新建建20107号)
- 2024年度年福建省考评员考试题库附答案(基础题)
- 环卫保洁服务管理服务机构设置
- 纯电动汽车结构与检修
- 保护绿水青山班会课件
- 2022年12月大学英语四级考试真题(第1套)
评论
0/150
提交评论