2024届东北育才中学数学高二第二学期期末检测试题含解析_第1页
2024届东北育才中学数学高二第二学期期末检测试题含解析_第2页
2024届东北育才中学数学高二第二学期期末检测试题含解析_第3页
2024届东北育才中学数学高二第二学期期末检测试题含解析_第4页
2024届东北育才中学数学高二第二学期期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届东北育才中学数学高二第二学期期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.随机变量,且,则()A.0.20 B.0.30 C.0.70 D.0.802.已知m>0,n>0,向量则的最小值是(

)A. B.2 C. D.3.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较大221032课外阅读量一般82028总计303060由以上数据,计算得到的观测值,根据临界值表,以下说法正确的是()P(K2≥k0)0.500.400.250.150.100.050.050.0100.005k00.4550.7081.3232.0722.7063.8415.0246.6357.879A.在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”B.在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关C.在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关D.在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关4.已知函数的导数是,若,都有成立,则()A. B.C. D.5.的内角的对边分别为,,,若的面积为,则A. B. C. D.6.已知,若的展开式中各项系数之和为,则展开式中常数项为()A. B. C. D.7.在极坐标系中,点关于极点的对称点为A. B. C. D.8.已知某人每天早晨乘坐的某一班公共汽车的准时到站的概率为,则他在3天乘车中,此班车恰有2天准时到站的概率为()A. B. C. D.9.用数学归纳法证明:时,在第二步证明从到成立时,左边增加的项数是()A. B. C. D.110.已知集合,则等于()A. B. C. D.11.在复平面内,复数的共轭复数对应的点位于A.第一象限 B.第二象限C.第三象限 D.第四象限12.已知是虚数单位,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若,则________14.双曲线的焦点坐标为____________.15.若在展开式中,若奇数项的二项式系数之和为,则含的系数是_____________.16.若向量,,,,且,则与的夹角等于________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)求的最小值;(2)已知为正数,且,求证.18.(12分)如图,在四棱锥中,底面为菱形,,,为线段的中点,为线段上的一点.(1)证明:平面平面.(2)若,二面角的余弦值为,求与平面所成角的正弦值.19.(12分)已知椭圆经过点,且离心率.求椭圆的方程;设、分别是椭圆的上顶点与右顶点,点是椭圆在第三象限内的一点,直线、分别交轴、轴于点、,求四边形的面积.20.(12分)第十二届全国人名代表大会第五次会议和政协第十二届全国委员会第五次会议(简称两会)分别于2017年3月5日和3月3日在北京开幕,某高校学生会为了解该校学生对全国两会的关注情况,随机调查了该校200名学生,并将这200名学生分为对两会“比较关注”与“不太关注”两类,已知这200名学生中男生比女生多20人,对两会“比较关注”的学生中男生人数与女生人数之比为,对两会“不太关注”的学生中男生比女生少5人.(1)该校学生会从对两会“比较关注”的学生中根据性别进行分层抽样,从中抽取7人,再从这7人中随机选出2人参与两会宣传活动,求这2人全是男生的概率.(2)根据题意建立列联表,并判断是否有99%的把握认为男生与女生对两会的关注有差异?附:,其中.0.1000.0500.0100.0012.7063.8416.63510.82821.(12分)有20件产品,其中5件是次品,其余都是合格品,现不放回的从中依次抽2件.求:(1)第一次抽到次品的概率;(2)在第一次抽到次品的条件下,第二次抽到次品的概率.22.(10分)以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系.(1)将直线:(为参数)化为极坐标方程;(2)设是(1)中的直线上的动点,定点,是曲线上的动点,求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:由及可得.详解:∵,∴.故选B.点睛:本题考查正态分布,若随机变量中,则正态曲线关于直线对称,因此有,().2、C【解题分析】分析:利用向量的数量积为0,求出m,n的方程,然后利用基本不等式求解表达式的最小值即可.详解:m>0,n>0,向量,可得,则,当且仅当时,表达式取得最小值.故选:C.点睛:条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.3、D【解题分析】分析:根据临界值表,确定犯错误的概率详解:因为根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关.选D.点睛:本题考查卡方含义,考查基本求解能力.4、D【解题分析】分析:由题意构造函数,结合函数的单调性整理计算即可求得最终结果.详解:令,则:,由,都有成立,可得在区间内恒成立,即函数是区间内单调递减,据此可得:,即,则.本题选择D选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.5、C【解题分析】分析:利用面积公式和余弦定理进行计算可得。详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。6、B【解题分析】

通过各项系数和为1,令可求出a值,于是可得答案.【题目详解】根据题意,在中,令,则,而,故,所以展开式中常数项为,故答案为B.【题目点拨】本题主要考查二项式定理,注意各项系数之和和二项式系数和之间的区别,意在考查学生的计算能力,难度不大.7、C【解题分析】分析:在极坐标系中,关于极点的对称点为详解:∵关于极点的对称点为,

∴关于极点的对称点为.

故选:C.点睛:本题考查一个点关于极点的对称点的求法,是基础题,解题时要认真审题,注意极坐标性质的合理运用.8、B【解题分析】由题意,恰有2天准时到站的概率为,故选择B。9、A【解题分析】

先求出n=k+1时左边最后的一项,再求左边增加的项数.【题目详解】n=k+1时左边最后的一项为,n=k时左边最后一项为,所以左边增加的项数为.故选:A【题目点拨】本题主要考查数学归纳法,意在考查学生对该知识的理解掌握水平.10、D【解题分析】分析:求出集合,,即可得到.详解:故选D.点睛:本题考查两个集合的交集运算,属基础题.11、D【解题分析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.12、B【解题分析】

根据复数的乘法运算法则,直接计算,即可得出结果.【题目详解】.故选B【题目点拨】本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

考虑的奇偶性,利用奇偶性解决问题.【题目详解】令,则有,且定义域为,关于原点对称,所以是奇函数,则,即,所以.【题目点拨】本题考查类奇偶函数的运用,难度较易.关键是先构造出奇偶函数,然后利用新函数的值去分析结果.14、【解题分析】

首先将双曲线方程整理为标准方程的形式,然后求解其焦点坐标即可.【题目详解】双曲线方程即:,其中,故,由双曲线的方程可知双曲线焦点在x轴上,故焦点坐标为.故答案为:.【题目点拨】本题主要考查双曲线方程焦点的计算,属于基础题.15、【解题分析】

由题意可知,奇数项的二项式系数之和为,求出,然后求出展开式的通项,利用的指数为,求出参数的值,然后将参数的值代入通项,即可求出含项的系数.【题目详解】由题意可知,奇数项的二项式系数之和为,解得,展开式的通项为,令,得,因此,展开式中含的系数为.故答案为.【题目点拨】本题考查二项展开式中奇数项系数和的问题,同时也考查了二项展开式中指定项系数的求解,一般利用展开式通项来进行计算,考查运算求解能力,属于中等题.16、【解题分析】

由平面向量数量积的运算的:,即与的夹角等于【题目详解】由,,所以,,,所以,即与的夹角等于,故答案为:【题目点拨】本题考查向量数量积的坐标运算、向量的夹角公式、向量模的求法,属于基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)3;(2)证明见解析.【解题分析】

(1)利用绝对值不等式求得函数的最小值.(2)利用基本不等式,证得不等式成立.【题目详解】(1)依题意,当且仅当时,取得最小值,故的最小值为.(2)由(1)知,,当且仅当时等号成立.【题目点拨】本小题主要考查利用绝对值不等求得最小值,考查利用基本不等式证明不等式,属于基础题.18、(1)见解析;(2)【解题分析】

(1)由得平面PAE,进而可得证;(2)先证得平面,设,以为坐标原点,的方向为轴正方向,建立空间直角坐标系,分别计算平面的法向量为和,设与平面所成角为,则,代入计算即可得解.【题目详解】(1)证明:连接,因为,为线段的中点,所以.又,,所以为等边三角形,.因为,所以平面,又平面,所以平面平面.(2)解:设,则,因为,所以,同理可证,所以平面.如图,设,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.易知为二面角的平面角,所以,从而.由,得.又由,,知,.设平面的法向量为,由,,得,不妨设,得.又,,所以.设与平面所成角为,则.所以与平面所成角的正弦值为.【题目点拨】用向量法求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.19、;.【解题分析】

运用椭圆的离心率公式和满足椭圆方程,解方程可得,的值,即可得到所求椭圆方程;求得,的坐标,设,求得直线,的方程,可得,的坐标,进而计算四边形的面积.【题目详解】由椭圆的离心率为得,,.又椭圆C经过点,,解得,椭圆C的方程为.由可知,,.设,则直线,从而;直线,从而.四边形的面积.,.【题目点拨】本题考查椭圆方程的求法,考查四边形面积的求法,考查方程思想和运算能力,属于中档题.20、(1)没有99%的把握认为男生与女生对两会的关注有差异;(2).【解题分析】【试题分析】(1)可先设男生比较关注和不太关注的人分别为,则女生比较关注和不太关注的为,建立方程组,由此可得列联表为:,然后运用计算公式算出,借助表中的参数可以断定没有99%的把握认为男生与女生对两会的关注有差异;(2)先由分层抽样的知识点算得:在男生和女生中分别抽取的人数为4人、3人,再运用古典概型的计算公式算得其概率.解:(1)设男生比较关注和不太关注的人分别为,则女生比较关注和不太关注的为,则由题意得:,因此可得列联表为:∴,所以没有99%的把握认为男生与女生对两会的关注有差异.(2)由分层抽样的知识点可得:在男生和女生中分别抽取的人数为4人、3人.则.21、(1)(2)【解题分析】

(1)抽到每件产品的可能性相同,直接做比即可(2)考虑剩余产品数目和剩余次品数目再做比例。【题目详解】设第一次抽到次品的事件为,第二次抽到次品的事件为.(1)因为有20件产品,其中5件是次品,抽到每件产品的可能性相同,所以第一次抽到次品的概率为.(2)第一次抽到次品后,剩余件产品,其中有件次品,又因为抽到每件产品的可能性相同,所以在第一次抽到次品的条件下,第二次抽到次品的概率为.【题目点拨】本题考查古典概型和条件概率,属于基础题。22、(1);(2).【解题分析】

(1)先将直线的参数方程化为普通方程,再由可将直线的普通方程化为极

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论