图像几何运算_第1页
图像几何运算_第2页
图像几何运算_第3页
图像几何运算_第4页
图像几何运算_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、图像几何运算几何运算改变像素之间的空间位置,没有改变灰度等级值,需要两个独立的算法:空间变换和灰度值插值 图像的几何运算几何运算也叫几何变换:包括图象的平移,旋转,镜象变换,转置,放缩等。一平移(translation)将图像沿水平或垂直方向移动位置后,获得新的图像的变换方式。例如:图像坐标中象素点(x0 ,y0)移动到(x1,y1) 位置灰度不变。(x0 ,y0 )点,经过平移(tx,ty),变为点(x1,y1)两点之间的关系 为:x1=x0+tx; y1=y0+ty.以矩阵的形式表示为 :我们更关心的是它的逆变换: 因为:我们想知道的是平移后的图象中每个像素的颜色 。x0=x1-tx ,

2、y0=y1-ty例如:新图中左上角点的RGB值是多少?很显然,该点是原图中的某一点经过平移后得到的,这两点的颜色肯定是一样的,所以只要知道了原图那点的RGB值即可。那么到底新图中的左上角点对应原图中的哪一点呢?将左上角点的坐标(0,0)代入公式(2),得到x0=-tx;y0=-ty;所以新图中的(0,0)点的颜色和原图中(-tx,-ty)的一样。设用 表示新图,用 表示原图。( , )g x y( , )f x y(0,0)g在新图的坐标系中是左上角的象素,原图00(,)f xy中的象素在新坐标系中的位置变成了f(tx,-ty),新的坐标系中g(0,0)f(-tx,-ty)。例如:平移后出现的

3、问题1、如果新图中有一点(x1,y1),按照公式(2)得到的(x0,y0)不在原图中该怎么办?通常的做法是,把该点的RGB值统一设成(0,0,0)或者(255,255,255)。2、平移后的图象是否要放大?一种做法是不放大,移出的部分被截断,如下图所示,图2为原图,图3为移动后的图。这种处理,文件大小不会改变。平移前的图平移后的图像还有一种做法是:将图象放大,使得能够显示下所有部分 移动后被放大图像这种处理,文件大小要改变。设原图的宽和高分别是w1,h1则新图的宽和高变为w1+|tx|和h1+|ty|,加绝对值符号是因为tx,ty有可能为负 .下面给出Translation的源代码。算法的思想

4、是先将所有区域填成白色,然后找平移后显示区域的左上角点(x0,y0)和右下角点(x1,y1)。分几种情况: 先看x方向(width指图象的宽度) l1.tx-width很显然,图象完全移出了屏幕,不用做任何处理2-widthtx0,如图5所示图像向左上方移动图象区域的x范围从0到width-|tx|,对应原图的范围从|tx|到width图530txwidth , 如图6所示 , 图像向右下方平移0txwidth,0tyheight的情况图象区域的x范围从tx到width,对应原图的范围从0到width-tx 图64txwidth,图象完全移出了屏幕,不用做任何处理 。y方向是对应的(方向是对应

5、的(height表示图象的高度表示图象的高度1ty-height,图象完全移出了屏幕,不用做任何处理2-heightty0,图象区域的y范围从0到height-|ty|,对应原图的范围从|ty|到height30tyheight ,图象区域的y范围从ty到height,对应原图的范围从0到height-ty4tyheight,图象完全移出了屏幕,不用做任何处理 ) 这种做法利用了位图存储的连续性,即同一行的像素在内存中是相邻的。利用memcpy函数,从(x0,y0)点开始,一次可以拷贝一整行(宽度为x1-x0),然后将内存指针移到(x0,y0+1)处,拷贝下一行,这样拷贝(y1-y0)行就完成

6、了全部操作,避免了一个一个像素的计算,提高了效率。 图像平移实例1.图像平移按钮属性修改2.创建translation 的窗体,添加两个按钮,2个textbox控件,2个label控件和1个groupbox控件3.Translation窗体的按钮click事件,2个get属性访问器4.图像平移按钮的click事件(主)保持原图像尺寸大小不变,超出的尺寸被截断,不足的部分以白色像素填充X=x+x0 Y=y+y0 (4.1) 把坐标原点(0 ,0)平移到(x0,y0)图像镜象(mirror) 镜象分水平镜象和垂直镜象两种 原图水平镜像垂直镜像镜象的变换矩阵很简单,设原图宽为w,高为h,变换后,图的

7、宽和高不变.水平镜象为: 垂直镜象为 图像镜像实例1.Mirror窗体2个按钮控件,1个groupbox控件和2个Radiobutton控件2.给Mirror窗体的2个按钮添加click事件和1个get属性访问器3.主窗体的图像镜像按钮,添加click事件(主)以水平中轴线为对称轴,两边像素值互换图像缩放(zoom) 图像比例缩放是指将给定的图像在x轴方向按比例缩放fx倍,沿y轴方向比例缩放fy。当fx fy时,称为图像的全比例缩放。当fx fy时,图像象素间的相对位置会发生畸变。设原图像中的点P(x0,,y0),比例缩放后在新的图像中对应点P(x,y), P(x0,,y0)和 P(x,y)之

8、间的对应关系如图所示: 比例缩放前后两点之间的关系用矩阵表示为:00000010011xxfxyfyy 10 xxf x10yyf y其逆矩阵为:0010010011001xyfxxyyf0 xxxf0yyyf插值算法(Interpolation) 比例缩放所产生的图像中有可能在原图中找不到相应的象素点,我们采用的做法是找与之最临近的点,我们采用的做法是找与之最临近的点 。即利用邻域的像素来估计新的像素值 的处理方法就是插值算法。常用的插值算法有:最邻近插值(Nearest Neighbour Interpolation)。 线形插值(Linear Interpolation)。双线形插值(B

9、ilinear Intrepolation) 曲线插值(Curvilinear Interpolation) (1)最临近插值图像变换后找不到相应的象素点时,直接赋值为和它最相近的的象素值的插值算法。例如:在图像的缩放中,将一幅66的图像按比例缩小,fxfy1/2,图像的长和宽均缩小到原来的一半,成为一幅33的图像。 原图像的象素从(0,0)到(5,5),新图像的象素从(0,0)到(2,2)。如下图:66的原图f新图中的灰度值利用缩放公式0 xxxf0yyyf计算得到X0=0/0.5=0 y0 =0 X1=1/0.5= 2 y1=2 X2=2/0.5=4 y2=4 g(0,0)=f(0,0)

10、, g(0,1)=f(0,2) , g(0,2)=f(0,4), g(1,0)=f(2,0), g(1,1)=f(2,2), g(1,2)=f(2,4) g(2,0)=f(4,0), g(2,1)=f(4,2) ,g(2,2)=f4,4)33的新图g66的原图f图像缩小,可以在原图像中挑选信息,缩小之后的图与原图像比较丢失了很多信息。图像放大处理中,需要对放大后多出来的空格填入适当的象素值,采用最临近插值法举例如下:44的以原图f长和宽各放大2倍,利用公式得到88的新图像。新图像中各象素位置X0=0 Y0=0 X1=0.5 Y1=0.5 X2=1 Y2=1 X31.5 Y3=1.5 X4=2

11、Y4=2 X5=2.5 Y5=2.5 X6=3 Y6=3 X7=3.5 Y7=3.5g(0,0)=f(0,0) g(0,1)=f(0,0.5) g(0,2)=f(0,1) g(0,3)=f(0,1.5) g(0,4)=f(0,2) g(0,5)=f(0,2.5) g(0,6)=f(0,3) g(0,7)=f(0,3.5) g(1,0)=f(0.5,0) g(1,1)=f(0.5,0.5) g(1,2)=f(0.5,1) g(1,3)f(0.5,1.5) g(1,4)=f(0.5,2) g(1,5)=f(0.5,2.5) g(1,6)=f(0.5,3) g(1,7)=f(0.5,3.5) g(2

12、,0)=f(1,0) g(2,1)=f(1,0.5)g(2,2)=f(1,1) g(2,3)=f(1,1.5) g(2,4)=f(1,2) g(2,5)=f(1,2.5) g(2,6)=f(2,3) g(2,7)=f(1,3.5) g(3,0)=f(1.5,0) g(3,1)=f(1.5,0.5) g(3,2)=f(f(1.5,1) g(3,3)=f(1.5,1.5) g(3,4)=f(1.5,2) g(3,5)=f(1.5,2.5) g(3,6)=f(1.5,3) g(3,7)=f(1.5,3.5) g(4,0)=f(2,0) g(4,1)f(2,0.5) g(4,2)=f(2,1) g(4

13、,3)=f(2,1.5) g(4,4)=f(2,2) g(4,5)=f(2,2.5) g(4,6)=f(2,3) g(4,7)=f(2,3.5) g(5,0)=f(2.5,0) g(5,1)f(2.5,0.5) g(5,2)=f(2.5,1) g(5,3)=f(2.5,1.5) g(5,4)=f(2.5,2) g(5,5)=f(2.5,2.5) g(5,6)=f(2.5,3) g(5,7)=f(2.5,3.5) g(6,0)=f(3,0) g(6,1)f(3,0.5) g(6,2)=f(3,1) g(6,3)=f(3,1.5) g(6,4)=f(3,2) g(6,5)=f(3,2.5) g(6

14、,6)=f(3,3) g(6,7)=f(3,3.5) g(7,0)=f(3.5,0) g(7,1)f(3.5,0.5) g(7,2)=f(3.5,1) g(7,3)=f(3.5,1.5) g(7,4)=f(3.5,2) g(7,5)=f(3.5,2.5) g(7,6)=f(3.5,3) g(7,7)=f(3.5,3.5) 放大后88的新图(2)线形插值线形插值是使用原图中两个值来构造所求坐标处的值。例如:如图所示,如果已经知道了两点x0,x2处的函数值f(x0),f(x2),现在要求x1处的函数值f(x1)。我们假设函数是线性的,利用几何知识可以知道:20110020()()()()()f x

15、f xf xxxf xxx双线性插值在图象处理中需要将线形插值扩展到二维的情况,即采用双线形插值(Bilinear Intrepolation)例如:已知四点 f(x0,y0),f(x2,y2) ,f(x2,y0),f(x2,y2) 的灰度,要求g(x1,y1)点的灰度,可以先在水平方向上由f(x0,y0),f(x2,y2)线形插值求出g(x0,y1),f(x2,y0),f(x2,y2)线形插值求出g(x2,y1),然后在垂直方向上由g(x0,y1) ,g(x2,y1)线形插值求出g(x1,y1) 020001100020( ,)( ,)( , )()( ,)f x yf x yg x yyy

16、f x yyy222021102020( ,)( ,)( , )()( ,)f x yf x yg x yyyf x yyy212111100120( , )( , )( , )()( , )f x yf x yg x yxxf x yxx双线性插值可以通过三次运算的到。处理效果比较满意。这种处理具有低通滤波性质,使高频分量受到损失,图像轮廓模糊。另外,图像处理中还使用双曲线插值,及三次内插法解决图像缩放及图像旋转后的灰度填充。图像缩放实例将图像中某点(x,y)经过缩小放大后位置变成(x,y):x=ax y=by (4.5)1.主窗体添加图像缩放控件2.创建zoom的windows窗体,该窗体

17、用于选择缩放量以及用何种灰度插值法。2个button控件,1个groupbox控件2个radiobutton控件,2个label控件和2个textbox控件3.为zoom窗体添加click事件和3个get属性访问器,分别获得横向缩放量和纵向缩放量以及使用哪种插值法4.主窗体的图像缩放按钮的click事件(主)图像旋转(rotation) 图像旋转是指图像以某一点作为轴转过一定的角度。通常的做法是以图象的中心为圆心旋转。例如:图7旋转30度(顺时针方向)后的图象如图8所示. 可以看出,旋转后图象变大了。 图8旋转后的图图7原图若要使旋转后保持原尺寸图像就要进行裁切有些内容就会损失。我们采用第一种

18、做法 图像旋转变换矩阵 先来看一下,将一个点顺时针旋转a角后的坐标变换公式,如图10所示,r为该点到原点的距离,在旋转过程中,r保持不变。b为r与x轴之间的角度。 x0=r*cos(b); y0=r*sin(b)图10旋转前:x0=r*cos(b); y0=r*sin(b) 旋转a角度后 :1*cos()xrba*cos( )cos( )*sin( )sin( )rbarba00cos( )sin( )xaya1*sin()yrba*sin( )cos( )*cos( )sin( )rbarba00cos( )sin( )yaxa以矩阵的形式表示 其逆矩阵的形式表示为上面的公式中,坐标系I是以图象的中心为原点,向右为x轴正方向,向上为y轴正方向。它和以图象左上角点,向右为x轴正方向,向下为y轴正方向的坐标系II之间的转换关系如何呢? 两种坐标系间的转换关系 逆变换为 :按照上面的公式,我们可以把变换分成3步:第一: 将坐标系II变成I ;第二: 将该点顺时针旋转a角;第三: 将坐标系I变回II ,这样,我们就得到了变换矩阵,是上面三个矩阵的级联。 上面公式中Wold表示原图的宽 ,Hold表示原图 的高,Wnew新图的宽 ,Hnew新图的高 ,可以看出 Wnew=max(|x4-x1|,|x3-x2|) ; Hnew=max(|y4-y1|,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论