一次函数与几何图形综合_专题_第1页
一次函数与几何图形综合_专题_第2页
一次函数与几何图形综合_专题_第3页
一次函数与几何图形综合_专题_第4页
一次函数与几何图形综合_专题_第5页
免费预览已结束,剩余29页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.word可编辑.L次函数与几何图形综合专题总论:函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函

2、数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题。一次函数与几何综合题是八年级学生初次接触一种用代几综合解决问题的方法,这种方法和能力是九年级解决中考压轴题所必须具备的。1 .代数(1)表达什么函数(包括其系数的代数意义、几何意义、物理意义)(2)显现怎样的图形(自身、与坐轴、与其他图形)(3)既是一个方程,也是一个坐标4)藏有那些数据,含有什么些关系(5)要建立某种代数关系缺少那些数据2 .几何(1)基

3、本图象有几个(2)图象之间有怎样关系(3)图象与所要证明(求解)的结论怎样的关联(4)要建立图象与图象之间的关系缺少那些数据3 .代数与几何(1)代数(几何)在那些地方为几何(代数)提供了怎样的数据(2)几何(代数)通过什么方式为几何(代数)提供关系式(3)怎样设数据(坐标或线段长)专业.专注.word可编辑.函数与几何综合题的解题思想方法函几问题”与几函问题”涉及的知识面广、知识跨度大、综合性强,应用数学方法多、纵横联系较复杂、结构新颖灵活、注重基础能力、探索创新和数学思想方法,它要求学生有良好的心理素质和过硬的数学基本功,能从已知所提供的信息中提炼出数学问题,从而灵活地运用所学知识和掌握的

4、基本技能创造性的解决问题,正因如此,解决这类问题时,要注意解决问题的策略,常用的解题策略一般有以下几种:1 .综合使用分析法和综合法。就是从条件与结论出发进行联想、推理,由已知得可知”,从要求到需求”,通过对问题的两边夹击”,使它们在中间的某个环节上产生联系,从而使问题得以解决。2 .运用方程的思想。就是寻找要解决的问题中量与量之间的等量关系,建立已知量与未知量间的方程,通过解方程从而使问题得到解决;在运用这种思想时,要注意充分挖掘问题的的隐藏条件,寻找等量关系建立方程或方程组;3 .注意使用分类讨论的思想(函数方法)。函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型

5、,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.函数与几何结合的综合题中往往注意考查学生的分类讨论的数学思想,因此在解决这类问题时,一定要多一个心眼儿,多从侧面进行缜密地思考,用分类讨论的思想探讨出现结论的一切可能性,从而使问题的解答完整无遗。4 .用数形结合的思想。数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.在中学数学中,数”与形”不是孤立的,它们的辩证统一表现在:数”可以准确地澄清形”的模糊,而形”能直观地启迪数”的计算;使用数形结合的思想来解5 .运用转化

6、的思想。转化的数学思想是解决数学问题的核心思想,由于函数与几何结合的问题都具有较强的综合性,因此在解决这类问题时,要善于把新知识”转化为旧知识”,把朱知”化为巴知“,把抽象”的问题转化为具体”的问题,把复杂”的问题转化为简单”的问题,可以大胆地说,不掌握转化的数学思想,就很难正确而全面地解决函数与几何结合的综合问题。知识规律小结:(1)常数k,b对直线y=kx+b(k前)位置的影响.专业专注.word可编辑.当b>0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b<0时,直线与y轴的负半轴相交.b当k,b异号时,即-H>0时,直线与x轴正半轴相交;kb当b=0时,即

7、-=0时,直线经过原点;k当k,b同号时,即-9<0时,直线与x轴负半轴相交.k当k>O,b>O时,图象经过第一、二、三象限;当k>0,b=0时,图象经过第一、三象限;当b>O,bvO时,图象经过第一、三、四象限;当k<O,b>0时,图象经过第一、二、四象限;当k<O,b=0时,图象经过第二、四象限;当bvO,bvO时,图象经过第二、三、四象限.(2)直线y=kx+b(k却)与直线y=kx(k制)的位置关系.直线y=kx+b(k却)平行于直线y=kx(k却)当b>0时,把直线y=kx向上平移b个单位,可得直线y=kx+b;当b<O时,

8、把直线y=kx向下平移|b|个单位,可得直线y=kx+b.(3)直线bi=k1x+bi与直线y2=k2x+b2(k1却,k2却)的位置关系.kwk2nyi与y2相交;k1#k2-r、一3uyi与y2相父于y轴上同一点(0,bi)或(0,b2);bi=b23="匕yi与y2平行;卜产"=yi与y2重合.B*b2也52例题精讲:专业.专注.word可编辑.1.已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线I1与经过点A的直线I2相交于点B,点B坐标为(18,(1)求直线li,I2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD/y

9、轴交直线I2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF设点C的纵坐标为a,求点D的坐标(用含a的代数式表示);若矩形CDEF的面积为108,求出点C的坐标.解:(1)设直线li的表达式为y=kix点(18,6)在直线I1上.-6=18k1.k1=131.y=x3设直线I2的表达式为y=k2x+b点A(0,24),B(18,6)在l2上待定系数法可得直线I2的解析式为:y=-x+24(2);点C在直线I1上,且点C的纵坐标为ax=3a,,点C的坐标为(3a,a)专业.专注.word可编辑.CD/y轴.点D的横坐标为3a,点D在直线l2上,.y=-3a+24.D(3a,

10、-3a+24)C(3a,a),D(3a,-3a+24)1.CF=3a,CD=-3a+24-a=-4a+24矩形CDEF的面积为108S矩形cdef=CF?CD=3ax(-4a+24)=108,解得a=3当a=3时,3a=9,C点坐标为(9,3)2.如图所示,直线L:y=mx+5m与x轴负半轴、y轴正半轴分别交于A、B两点。(1)当OA=OB时,试确定直线L的解析式;(2)在(1)的条件下,如图所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM±OQ于M,BN,OQ于N,若AM=4,BN=3,求MN的长。当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B

11、为直角顶点在第一、二象限内作等腰直角OBF和等腰直角ABE,连EF交y轴于P点,如图。问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值,若是,请求出其值,若不是,说明理由。第2题图.word可编辑.考点:一次函数综合题;直角三角形全等的判定.专题:代数几何综合题.分析:(1)是求直线解析式的运用,会把点的坐标转化为线段的长度;(2)由OA=OB得到启发,证明.AMOZONB,用对应线段相等求长度(3)通过两次全等,寻找相等线段,并进行转化,求PB的长.解答:解:(1)直线L:y=mx+5m,.A(-5,0),B(0,5m),由OA=OB得5m=5,m=1,,直线解析式为:y=x+5.(

12、2)在AAMO和OBN中OA=OB,ZOAM=/BON,ZAMO=/BNO,AMOONB.AM=ON=4.BN=OM=3(3)如图,作EK±y轴于K点.先证AABOABEK,.OA=BK,EK=OB.再证PBFAPKE,专业.专注.word可编辑.PK=PB.PB=1BK=1OA=5.222,充分运用坐标系里的垂直关系证明全等,本题也涉及一点评:本题重点考查了直角坐标系里的全等关系次函数图象的实际应用问题.3.如图,直线li与x轴、y轴分别交于A、B两点,直线与直线li关于x轴对称,已知直线li的解析式为y=x+3(1)求直线I2的解析式;(3分)(2)过A点在ABC的外部作一条直线

13、l3,过点B作BEXl3于E,过点C作CF,I3于F分另,请画出图形并求证:BE+CF=EF(3)AABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交与点M,且BP=CQ,在4ABC平移的过程中,OM为定值;MC为定值。在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。(6分)考点:轴对称的性质;全等三角形的判定与性质.分析:(1)根据题意先求直线Ii与x轴、y轴的交点A、B的坐标,再根据轴对称的性质求直线%的上点C的坐标,用待定系数法求直线l2的解析式;(2)根据题意结合轴对称的性质,先证明BEAAFC,再根据全等三角形的性质,结合

14、图形证明BE+CF=EF;(3)首先过Q点作QHy轴于H,证明QCHPBO,形的性质和QHM0POM,从而得HM=OM,根据线段OM的值.解答:解:(1)二,直线Ii与x轴、y轴分别交于A、B两点,(0,3),.专业.专注图1.word可编辑.关于x轴对称,.C(0,-3),直线12的解析式为:y=-x-3;(2)如图1.答:BE+CF=EF. 直线12与直线11关于X轴对称,.AB=BC,/EBA=/FAC, .BEX13,CFX13ZBEA=/AFC=90° .BEAAAFC .BE=AF,EA=FC, .BE+CF=AF+EA=EF;(3)对,OM=3过Q点作QH,y轴于H,直

15、线12与直线1i关于x轴对称 ZPOB=/QHC=90°BP=CQ,又AB=AC,"BO=ZACB=/HCQ,则4QCH-PBO(AAS), .QH=PO=OB=CH .QHMPOM.HM=OM .OM=BC-(OB+CM)=BC-(CH+CM)=BC-OM1 2c-OMBC=3.4.如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足(a-2)2+Jb-4=0.(1)求直线AB的解析式;(2)若点M为直线ymx上一点,且ABM是以AB为底的等腰直角三角形,求m值;kk(3)过A点的直线y=kx-2k交y轴于负半轴于P,N点的横坐标为-1,过N点的直线y=-x

16、-交PM-PNAMAP于点M,试证明的值为定值专业.专注.word可编辑.考点:一次函数综合题;二次根式的性质与化简;一次函数图象上点的坐标特征;待定系数法求正比例函数解析式;全等三角形的判定与性质;等腰直角三角形.分析:(1)求出a、b的值得到A、B的坐标,设直线AB的解析式y=kx+b,代入得到方程组,求出即可;(2)当BMLBA,且BM=BA时,过M作MNL丫轴于N,证BMNABO(AAS),求出M的坐标即可;当AMLBA,且AM=BA时,过M作MNXX轴于N,同法求出M的坐标;当AM,BM,且AM=BM时,过M作MNLX轴于N,MH,丫轴于H,证BHMAMN,求出M的坐标即可.(3)设

17、NM与x轴的交点为H,分别过M、H作x轴的垂线垂足为G,HD交MP于D点,求出H、G的坐标,证AMGADH,AMGAADHDPCANPC,推出PN=PD=AD=AM代入即可求出答案.解答:解:(1)要使(a-2)2+而=4=0有意义,必须(a-2)2=0,Jb-4=0,.a=2,b=4,-A(2,0),B(0,4),设直线AB的解析式是y=kx+b,代入得:0=2k+b,4=b,解得:k=-2,b=4,,函数解析式为:y=-2x+4,答:直线AB的解析式是y=-2x+4.(2)如图2,分三种情况:专业.专注.word可编辑.如图(1)当BMBA,且BM=BA时,过M作MN,Y轴于N,BMN-A

18、BO(AAS),MN=OB=4,BN=OA=2,.ON=2+4=6,.M的坐标为(4,6),3代入y=mx得:m=一,2如图(2)当AMBA,且AM=BA时,过M作MNLX轴于N,BOAAANM(AAS),同理求出M1的坐标为(6,2),m=3当AMIBM,且AM=BM时,过M作MN,X轴于N,MH,丫轴于H,则BHMAMN,.MN=MH,设M(x,x)代入y=mx得:x=mx,(2).m=1,答:m的值是3或1或1.23(3)解:如图3,结论2是正确的且定值为2,设NM与x轴的交点为H,分别过M、H作x轴的垂线垂足为G,HD交MP于D点,由y=-x-k与x轴交于H点,22-H(1,0),专业

19、.专注.word可编辑.由y=x-k与y=kx-2k交于M点,22.M(3,K),.AMG2ADHDPCAPM-PN=2.AM点评:本题主要考查对一次函数图象上点的坐标特征的解析式,全等三角形的性质和判定理和计算是解此题的关键.而A(2,0),.A为HG的中点,又因为N点的横坐标为-1,且纵坐标为-2K,分别为-1、1,等腰直角三角形性质,二次根式的性质等知识点的理解和掌握.AMG2ADH(ASA),在y=2kx-±,22,可彳NN的纵坐标为-K,同理P的.ND平行于x轴且N、D的横坐标.N与D关于y轴对称,NPC,,PN=PD=AD=AM,用待定系数法求正比例函数,综合运用这些性质

20、进行推5.如图,直线AB交X轴负半轴于B(m,0),交Y轴负半轴于A(0,m),OCXAB于C(-2,-2)。BF(1求m的值;(2直线AD交OC于D,交X轴于E,过B作BF±AD于F若OD=OE,求的值;AE(3如图,P为x轴上B点左侧任一点,以AP为边作等腰直角4APM,其中PA=PM,直线MB交y轴于Q,当P在x轴上运动时,线段OQ长是否发生变化?若不变,求其值;若变化,说明理由。专业.专注.word可编辑.得k=-1,则方程可写为y=-x+m解答:(1)设直线AB的方程为y=kx+m,将点(m,0)代入方程再将点C(-2,2)代入方程得-2=(-1)x(-2)+m,即m=-4

21、过C作OB的垂线,垂足为GOB=OA.;AOB为等腰直角三角形.CBO-45,ACGBQCGOQOCB都是等腰直角三角形GB=OG=CG=2m=-4bf.(2)直线AD父OC于D,父X轴于E,过B作BF,AD于F若OD=OE,求BF的值;AE专业.专注.word可编辑.ZHBO=NFAH(同角的余角相等)OE=OD.OED=ODE丁NFEB=/OED,NADC=/ODE(对顶角相等).ADC=/FEB.HBO"CAD.CAD=/FAH在AAFB和AAFH中.AFB=/AFH=90jAF=AF(公共边)ZBAF=NFAH(已证)J:MFB-AAFH(ASA),BF=HF(全等三角形对应

22、边相等)在ABOH和MOE中,/HBO=/EAO(已证)BO=AO(已知)NBOH=/AOE=90=二ABOH=MOE(ASA),BH=AE(全等三角形对应边相等)BH=BFBH=2BFBFBFBF1"AE-BH_2BF-2APM,其中PA=PM,直线?若不变,求其值;若变化,(3)如图,P为x轴上B点左侧任一点,以AP为边作等腰直角MB交y轴于Q,当P在x轴上运动时,线段OQ长是否发生变化说明理由专业.专注.word可编辑.解rOQ的长不发生变化过p作PN垂直于尤轴交AB于明垂足为P,AAPM为等腰直角三角形,PM=PA,MPA=90°又AAQB为等腰直角三角形,二ZAB

23、O=45°ZNBP=ZABO=45气对顶角相等).&NPB是等腰直角三角形.PN=PBZNPA=NNPB+/S取=900+/3产力=ZJlffi+ZBPA二3FB在ANPAUABPM中,Rn=2m(已证)ZNPA=/MPB(已证)AP=MP(已知).ANPA=ABPM(SAS)ZPNAZPBM=45°XvZABO=45°ZABM=180°-ZOBA-ZPBM=180°-45*-45°=90°,MB1AB:过一点有且只有一条直线与已知直线垂直直线MP唯一vZQBO=45°AOBQ为等腰直角三角形.OQ=OB=

24、4线段OQ的长度不变如图,过P作x轴的垂线交AB的延长线为N,PM=PA,PB=PN,/NPA=BPM,NPAABPM(边角边),WJ有/PMB=/PAN=/PAB,由题意可知/OAB=/ABO=45,/OAP+/APO=/OAB+/PAB+APB=90=/MPA,在APMB中/PMB+/MBP+/MPB=/PMB+MBP+/MPA+/APB=180/PMB+血BP+/APB=180-ZMPA=90°/MBP=90-ZPMB/APB=90-ZPAB/APB=90-(90-ZOAB)=45°所以/MBA=180-/ABO/MBP=180-45-45°=90°

25、;故直线MB与直线AB互相垂直,所以线段OQ值不变(直线AB固定)。专业.专注.word可编辑.56.在平面直角坐标系中,一次函数y=ax+b的图像过点B(-1,一),与x轴父于点A(4,0),与y轴父2于点C,与直线y=kx交于点P,且PO=PA(1)求a+b的值;(2)求k的值;(2)(3)D为PC上一点,DF±x轴于点F,交OP于点E,若DE=2EF,求D点坐标.考点:一次函数与二元一次方程(组).专题:计算题;数形结合;待定系数法.分析:(1)根据题意知,一次函数y=ax+b的图象过点B(-1,5)和点A(4,0),把A、B代入求值2即可;(2)设P(x,y),根据PO=PA

26、,列出方程,并与y=kx组成方程组,解方程组;(3)设点D(x,-x+2),因为点E在直线y=-x上,所以E(x,x),F(x,0),再根据等量关222系DE=2EF列方程求解.解答:解:(1)根据题意得:5=-a+b2专业.专注.word可编辑.0=4a+b解方程组得-a+b=-+2=,即a+b=222(2)设P(x,y),上,由(1)得:一次函数又.PO=PA,.x2+y2=(4-x)2+y2y=kxy=x+2,2则点P即在一次函数y=ax+b上,又在直线y=kxy=ax+b的解析式是y=-1x+2,21.1斛万程组得:x=2,y=1,k=一.*的值是一;22(3)设点D(x,-1x+2)

27、,则E(x,1x),F(x,0),22.DE=2EF,-1x+2-1x=2X1x,222解得:x=1,则-1x+2=-1x31+2=-,23.D(1).2点评:本题要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.7.在直角坐标系中,B、A分别在x,y轴上,B的坐标为(3,0),/ABO=30°,AC平分/OAB交x轴于C;(1)求C的坐标(2若D为AB中点,/EDF=60°,证明:CE+CF=OC若D为AB上一点,以D作DEC,使DC=DE,/EDC=120°连BE,试问/EBCj度数是否发生变化;若不变,请求值o专业.专注.w

28、ord可编辑.在直角坐标系中,B、A分别在x,y轴上,B的坐标为(3,0),/ABO=30°,AC平分/OAB交x轴于C;解:.ZAOB=900ZABO=30°.ZOAB=300又AC是/OAB的角平分线.ZOAC=/CAB=30°.OB=3.OA=3OC=1即C(1,0)(1)若D为AB中点,/EDF=60°,证明:CE+CF=OC证明:取CB中点H,连CD,DH.AO=3CO=1.AC=2又分别是AB,CD中点.DH=1ACAB=232.DB=1AB=V3BC=2ZABC=302专业.专注.word可编辑.BC=2CD=2/CDB=60CD=1=DH

29、/EOF=/EDC+/CDF=60°/CDB=ZCDF+/FDH=60.ZEDC=ZFDH.AC=BC=2CDXABADC=900/CBA=30°,/ECD=60°.HD=HB=1.ZDHF=600在DCE和4DHF中/EDC=/FDH/DCE=/DHFDC=DH.DCEZDHF(AAS).CE=HF,CH=CF+FH=CF+CE=1OC=1,CH=OC,OC=CE+CF,连BE,试问/EBC的度数是否发生变化;若不变,请求值oDO(2)若D为AB上一点,以D#ADEC,使DC=DE,津DC=120解:不变/EBC=60°设DB与CE交与点G专业.专注.

30、word可编辑.;DC=DE/EDC=1201 .ZDEC=ZDCE=300在DGC和DCB中/CDG=/BDC/DCG=/DBC=30.DGCs"CBDCDB=DGDCDC=DEDEDB=DGDE在EDG和BDE中DE_DB,DGDE/EDG=/BDE2 .EDGsABDEZdeg=ZDBE=300ZEBD=ZDBE+ZDBC=6008.如图,直线AB交x轴正半轴于点A(a,0),交y轴正半轴于点B(0,b),且a、b满足Ja-4+|4b|=0(1)求A、B两点的坐标;(2)D为OA的中点,连接BD,过点O作OE,BD于F,交AB于E,求证/BDO=/EDA;专业.专注.word可

31、编辑.yji(3)如图,P为x轴上A点右侧任意一点,以BP为边作等腰RtAPBM,其中PB=PM,直线MA交y轴于点Q,当点P在x轴上运动时,线段OQ的长是否发生变化?若不变,求其值;若变化,求线段OQ的取值范围.解答:解::Ja_4+|4-b|二0.a=4,b=4,(4,0),B(0,4);作ZAOB的角平分线,交BD于G,BOG=/OAE=45OB=OA,/AOE=90-°/BOF,.A(2)ZOBG=BOGAOAE,J3OD=/A=45OD=AD,EDA.ADE.MN,x轴,垂足为.GOD2zGDO=/(3)过M作.OG=AE.BPM=90zBPO+/MPN=90MNP=90Z

32、BPO=ZPMN,ZPBO=ZMPN.专业.专注.word可编辑. .BP=MP,.,.PBOAMPN,MN=OP,PN=AO=BO,OP=OA+AP=PN+AP=AN,.MN=AN,/MAN=45°. ./BAO=45°,ZBAO+/OAQ=90° .BAQ是等腰直角三角形.OB=OQ=4.,无论P点怎么动OQ的长不变.点评:(1)考查的是根式和绝对值的性质.(2)考查的是全等三角形的判定和性质.(3)本题灵活考查的是全等三角形的判定与性质,还有特殊三角形的性质.9.如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),ZBAO=30.(1)

33、求AB的长度;(2)以AB为一边作等边ABE,作OA的垂直平分线MN交AB的垂线AD于点D.求证:BD=OE.(3)在(2)的条件下,连结DE交AB于F.求证:F为DE的中点.专业.专注.word可编辑.考点:全等三角形的判定与性质;线段垂直平分线的性质;等边三角形的性质;含30度角的直角三角形专题:计算题;证明题.分析:(1)直接运用直角三角形30。角的性质即可.(2)连接OD,易证ADO为等边三角形,再证ABD0AEO即可.(3)作EHLAB于H,先证ABOAEH,得AO=EH,再证4人5口04EFH即可.解答:(1)解:二.在RtABO中,/BAO=30,AB=2BO=2;证明:连接OD

34、,ABE为等边三角形,AB=AE,/EAB=60°,BAO=30。,作OA的垂直平分线MN交AB的垂线AD于点D,/DAO=60°.ZEAO=/NABX1.DO=DA,.ADO为等边三角形.DA=AO.专业.专注.word可编辑.在ABD与AEO中,.AB=AE,ZEAO=/NAB,DA=AO.ABD2AEO.BD=OE.(3)证明:作EHXAB于H.1.AE=BE,.1.AH=-AB,21“,"BOAB,-AH-BO,2在RtAAEH与RtBAO中,AH-BO,AE-ABRtAAEHRtABAO, .EH-AO-AD.又zEHF-/DAF-90,在HFE与AAF

35、D中,/EHF-/DAF,ZEFH-ZDFA,EH-AD .HFEAAFD, .EF-DF. .F为DE的中点.点评:本题主要考查全等三角形与等边三角形的巧妙结合,来证明角相等和线段相等.10.如图,直线y-1x+1分别与坐标轴交于A、B两点,在y轴的负半轴上截取OC-OB.3(1)求直线AC的解析式;(2)在x轴上取一点D(-1,0),过点D做AB的垂线,垂足为E,交AC于点F,交y轴于点G,求F点的专业.专注坐标;(3过点B作AC的平行线BM,过点O作直线AH十BI砧/击的值。ABy=kx(k>0),分别交直线AC、BM于点H、I,试求.word可编辑.解:(1)G分别与坐标轴父十A

36、、B两点可得点A坐标为(-3,0),点B坐标为(0,1)OC=OB,可得点C坐标为(0,-1)设直线AC的解析式为y=kx+b将A(-3,0),C(0,-1)代入解析式-3k+b=0且b=-1可得k=-,b=-13直线AC的解析式为y=1x-13(2)在x轴上取一点D(-1,0),过点D做AB的垂线,垂足为E坐标;解:GEXABkEGkab=-1/0X直线y=x+13交AC于点F,交y轴于点G,求F点的专业.专注.word可编辑.kGE二=33'设直线ge的解析式为y=-3x+b'一将点D坐标(-1,0)代入,得y=-3M(T)+b=°(b=-3直线GE的解析式为y=-3x-3一1,一一x_联立y=x-1与y=-3x-3,可求出耳,3将其代入方程可得y=,_3_3.F点的坐标为(一彳,2)过点B作AC的平行线BM,过点O作直线y=kxAHB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论