实例某商店卖两种牌子的果汁_第1页
实例某商店卖两种牌子的果汁_第2页
实例某商店卖两种牌子的果汁_第3页
实例某商店卖两种牌子的果汁_第4页
实例某商店卖两种牌子的果汁_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1机动 目录 上页 下页 返回 结束 实例:某商店卖两种牌子的果汁,本地牌子每实例:某商店卖两种牌子的果汁,本地牌子每瓶进价瓶进价1元,外地牌子每瓶进价元,外地牌子每瓶进价1.2元,店主估元,店主估计,如果本地牌子的每瓶卖计,如果本地牌子的每瓶卖 元,外地牌子的元,外地牌子的每瓶卖每瓶卖 元,则每天可卖出元,则每天可卖出 瓶本瓶本地牌子的果汁,地牌子的果汁, 瓶外地牌子的果汁瓶外地牌子的果汁问:店主每天以什么价格卖两种牌子的果汁可问:店主每天以什么价格卖两种牌子的果汁可取得最大收益?取得最大收益?xyyx4570 yx7680 每天的收益为每天的收益为 ),(yxf)7680)(2 . 1()

2、4570)(1(yxyyxx 求最大收益即为求二元函数的最大值求最大收益即为求二元函数的最大值.一、问题的提出2二、多元函数的极值和最值二、多元函数的极值和最值的的图图形形观观察察二二元元函函数数22yxexyz 播放播放机动 目录 上页 下页 返回 结束 3 设函数设函数),(yxfz 在点在点),(00yx的某邻域内的某邻域内有定义,对于该邻域内异于有定义,对于该邻域内异于),(00yx的点的点),(yx:若满足不等式若满足不等式),(),(00yxfyxf ,则称函数,则称函数在在),(00yx有 极 大 值 ; 若 满 足 不 等 式有 极 大 值 ; 若 满 足 不 等 式),(),

3、(00yxfyxf ,则称函数在,则称函数在),(00yx有极有极小值;小值;1 1、二元函数极值的定义、二元函数极值的定义极极大大值值、极极小小值值统统称称为为极极值值. .使使函函数数取取得得极极值值的的点点称称为为极极值值点点. .机动 目录 上页 下页 返回 结束 4(1)(2)(3)例例1 1处有极小值处有极小值在在函数函数)0 , 0(4322yxz 例例处有极大值处有极大值在在函数函数)0 , 0(22yxz 例例处无极值处无极值在在函数函数)0 , 0(xyz 机动 目录 上页 下页 返回 结束 5定理定理 1 1(必要条件)(必要条件)设函数设函数),(yxfz 在点在点),

4、(00yx具有偏导数,且具有偏导数,且在点在点),(00yx处有极值,则它在该点的偏导数必处有极值,则它在该点的偏导数必然为零:然为零: 0),(00 yxfx, 0),(00 yxfy. .2 2、多元函数取得极值的条件、多元函数取得极值的条件证证定定理理 2 2(充充分分条条件件)设设函函数数),(yxfz 在在点点),(00yx的的某某邻邻域域内内连连续续,有有一一阶阶及及二二阶阶连连续续偏偏导导数数,机动 目录 上页 下页 返回 结束 6又又 0),(00 yxfx, , 0),(00 yxfy, 令令 Ayxfxx ),(00, Byxfxy ),(00, Cyxfyy ),(00,

5、则则),(yxf在点在点),(00yx处是否取得极值的条件如下:处是否取得极值的条件如下:(1 1)02 BAC时具有极值,时具有极值, 当当0 A时有极大值,时有极大值, 当当0 A时有极小值;时有极小值;(2 2)02 BAC时没有极值;时没有极值;(3 3)02 BAC时可能有极值时可能有极值, ,也可能没有极值,也可能没有极值,还需另作讨论还需另作讨论机动 目录 上页 下页 返回 结束 7例例 4 4 求由方程求由方程yxzyx22222 0104 z确定的函数确定的函数),(yxfz 的极值的极值解解求最值的一般方法求最值的一般方法: 将函数在将函数在D D内的所有驻点处的函数值及在

6、内的所有驻点处的函数值及在D D的边界上的最大值和最小值相互比较,其中最的边界上的最大值和最小值相互比较,其中最大者即为最大值,最小者即为最小值大者即为最大值,最小者即为最小值. . 与一元函数相类似,我们可以利用函数的与一元函数相类似,我们可以利用函数的极值来求函数的最大值和最小值极值来求函数的最大值和最小值.3 3、多元函数的最值、多元函数的最值机动 目录 上页 下页 返回 结束 8例例 5 5 求求二二元元函函数数)4(),(2yxyxyxfz 在在直直线线6 yx,x轴轴和和y轴轴所所围围成成的的闭闭区区域域D上上的的最最大大值值与与最最小小值值.解解例例 6 6 求求122 yxyx

7、z的最大值和最小值的最大值和最小值.机动 目录 上页 下页 返回 结束 9实例:实例: 小王有小王有200元钱,他决定用来购买两元钱,他决定用来购买两种急需物品:计算机磁盘和录音磁带,设他种急需物品:计算机磁盘和录音磁带,设他购买购买 张磁盘,张磁盘, 盒录音磁带达到最佳效果,盒录音磁带达到最佳效果,效果函数为效果函数为 设每张磁设每张磁盘盘8元,每盒磁带元,每盒磁带10元,问他如何分配这元,问他如何分配这200元以达到最佳效果元以达到最佳效果xyyxyxUlnln),( 问题的实质:求问题的实质:求 在条在条件件 下的极值点下的极值点yxyxUlnln),( 200108 yx三、条件极值拉

8、格朗日乘数法机动 目录 上页 下页 返回 结束 10拉格朗日乘数法拉格朗日乘数法 要找函数要找函数),(yxfz 在条件在条件0),( yx 下的下的可能极值点,可能极值点,先构造函数先构造函数),(),(),(yxyxfyxF ,其中其中 为某一常数,可由为某一常数,可由 . 0),(, 0),(),(, 0),(),(yxyxyxfyxyxfyyxx 解出解出 , yx,其中,其中yx,就是可能的极值点的坐标就是可能的极值点的坐标.条件极值条件极值:对自变量有附加条件的极值:对自变量有附加条件的极值机动 目录 上页 下页 返回 结束 11拉格朗日乘数法可推广到自变量多于两个的情况:拉格朗日乘数法可推广到自变量多于两个的情况:要找函数要找函数),(tzyxfu 在条件在条件 0),( tzyx ,0),( tzyx 下的极值,下的极值, 先构造函数先构造函数 ),(),(tzyxftzyxF ),(),(21tzyxtzyx 其中其中21, 均为常数,可由均为常数,可由 偏导数为零及条件解出偏导数为零及条件解出tzyx,,即得极值点的坐标,即得极值点的坐标.例例 7 7 将将正正数数 12分分成成三三个个正正数数zyx,之之和和 使使得得zyxu23 为为最最大大.解解机动

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论