材料力学课件:02拉压_第1页
材料力学课件:02拉压_第2页
材料力学课件:02拉压_第3页
材料力学课件:02拉压_第4页
材料力学课件:02拉压_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1第二章第二章 拉伸与压缩拉伸与压缩2第二章第二章 拉伸与压缩拉伸与压缩2-1 2-1 概概 述述 2-2 2-2 轴轴 力力 和和 轴轴 力力 图图2-3 2-3 截截 面面 上上 的的 应应 力力2-4 2-4 材料拉伸时的力学性质材料拉伸时的力学性质2-5 2-5 材料压缩时的力学性质材料压缩时的力学性质2-6 2-6 拉拉 压压 杆杆 的的 强强 度度 条条 件件2-7 2-7 拉压杆的变形拉压杆的变形 胡克定律胡克定律2-8 2-8 拉、拉、 压压 超超 静静 定定 问问 题题2-9 2-9 装配应力装配应力 和和 温度应力温度应力2-10 2-10 拉伸、压缩时的应变能拉伸、压缩时

2、的应变能2-11 2-11 应应 力力 集集 中中 的的 概概 念念目录32-1 2-1 概述概述2-1 42-1 2-1 概述概述52-1 2-1 概述概述62-1 2-1 概述概述7特点:特点: 作用在杆件上的外力合力的作用线与作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。长或缩短。杆的受力简图为杆的受力简图为F FF F拉伸拉伸F FF F压缩压缩2-1 2-1 概述概述82-1 2-1 概述概述92-2 2-2 轴力和轴力图轴力和轴力图F FF F1 1、轴力:横截面上的内力、轴力:横截面上的内力2 2、截面法求轴

3、力、截面法求轴力m mm mF FF FN N切切: : 假想沿假想沿m-mm-m横截面将杆横截面将杆切开切开留留: : 留下左半段或右半段留下左半段或右半段代代: : 将抛掉部分对留下部分将抛掉部分对留下部分的作用用内力代替的作用用内力代替平平: : 对留下部分写平衡方程对留下部分写平衡方程求出内力即轴力的值求出内力即轴力的值 0 xFF FF FN N0FFNFFN2-2102-2 2-2 轴力和轴力图轴力和轴力图3 3、轴力正负号:拉为正、轴力正负号:拉为正、压为负压为负4 4、轴力图:轴力沿、轴力图:轴力沿杆件轴杆件轴线的变化线的变化 由于外力的作用线与由于外力的作用线与杆件的轴线重合

4、,内力的杆件的轴线重合,内力的作用线也与杆件的轴线重作用线也与杆件的轴线重合。所以称为合。所以称为轴力。轴力。2-2F FF Fm mm mF FF FN N 0 xFF FF FN N0FFNFFN112-2 2-2 轴力和轴力图轴力和轴力图已知已知F F1 1=10kN=10kN;F F2 2=20kN=20kN; F F3 3=35kN=35kN;F F4 4=25kN;=25kN;试画试画出图示杆件的轴力图。出图示杆件的轴力图。11 0 xFkN1011 FFN例题例题2-12-1FN1F1解:解:1 1、计算各段的轴力。、计算各段的轴力。F1F3F2F4ABCDABAB段段kN102

5、010212FFFNBCBC段段2233FN3F4FN2F1F2122FFFN 0 xF 0 xFkN2543 FFNCDCD段段2 2、绘制轴力图。、绘制轴力图。kNNFx102510 122-2 轴力和轴力图轴力和轴力图西工大西工大132-3 2-3 截面上的应力截面上的应力横截面上的应力横截面上的应力 杆件的强度不仅与轴力有关,还与横截面面杆件的强度不仅与轴力有关,还与横截面面积有关。必须用应力来比较和判断杆件的强度。积有关。必须用应力来比较和判断杆件的强度。2-32-3142-3 2-3 截面上的应力截面上的应力横截面上的应力横截面上的应力152-3 2-3 截面上的应力截面上的应力横

6、截面上的应力横截面上的应力162-3 2-3 截面上的应力截面上的应力横截面上的应力横截面上的应力172-3 2-3 截面上的应力截面上的应力横截面上的应力横截面上的应力182-3 2-3 截面上的应力截面上的应力横截面上的应力横截面上的应力AFN 该式为横截面上的正应力该式为横截面上的正应力计计算公式。正应力算公式。正应力和轴力和轴力F FN N同号。同号。即拉应力为正,压应力为负。即拉应力为正,压应力为负。圣文南原理圣文南原理192-3 2-3 截面上的应力截面上的应力横截面上的应力横截面上的应力202-3 2-3 截面上的应力截面上的应力例题例题2-22-2 图示结构,试求杆件图示结构,

7、试求杆件ABAB、CBCB的的应力。已知应力。已知 F F=20kN=20kN;斜杆;斜杆ABAB为直为直径径20mm20mm的圆截面杆,水平杆的圆截面杆,水平杆CBCB为为15151515的方截面杆。的方截面杆。F FA AB BC C 0yFkN3 .281NF解:解:1 1、计算各杆件的轴力。、计算各杆件的轴力。(设斜杆为(设斜杆为1 1杆,水平杆为杆,水平杆为2 2杆)杆)用截面法取节点用截面法取节点B B为研究对象为研究对象kN202NF 0 xF4545045cos21NNFF045sin1 FFN1 12 2F FB BF F1NF2NFxy4545212-3 2-3 截面上的应

8、力截面上的应力kN3 .281NFkN202NF2 2、计算各杆件的应力。、计算各杆件的应力。MPa90Pa109010204103 .286623111AFNMPa89Pa1089101510206623222AFNF FA AB BC C45451 12 2F FB BF F1NF2NFxy4545222-4 2-4 材料拉伸时的力学性质材料拉伸时的力学性质力学性质:在外力作用下材料在变形和破坏方面所力学性质:在外力作用下材料在变形和破坏方面所表现出的力学性能表现出的力学性能一一 试件和实验条件试件和实验条件常温、静常温、静载载2-42-4232-4 2-4 材料拉伸时的力学性质材料拉伸时

9、的力学性质242-4 2-4 材料拉伸时的力学性质材料拉伸时的力学性质二二 低碳钢的拉伸低碳钢的拉伸252-4 2-4 材料拉伸时的力学性质材料拉伸时的力学性质oabcef明显的四个阶段明显的四个阶段1 1、弹性阶段、弹性阶段obobP比例极限比例极限Ee弹性极限弹性极限tanE2 2、屈服阶段、屈服阶段bcbc(失去抵(失去抵抗变形的能力)抗变形的能力)s屈服极限屈服极限3 3、强化阶段、强化阶段cece(恢复抵抗(恢复抵抗变形的能力)变形的能力)强度极限强度极限b4 4、局部径缩阶段、局部径缩阶段efefPesb262-4 2-4 材料拉伸时的力学性质材料拉伸时的力学性质两个塑性指标两个塑

10、性指标: :%100001lll断后伸长率断后伸长率断面收缩率断面收缩率%100010AAA%5为塑性材料为塑性材料%5为脆性材料为脆性材料低碳钢的低碳钢的%3020%60为塑性材料为塑性材料0272-4 2-4 材料拉伸时的力学性质材料拉伸时的力学性质三三 卸载定律及冷作硬化卸载定律及冷作硬化1 1、弹性范围内卸载、再加载、弹性范围内卸载、再加载oabcefPesb2 2、过弹性范围卸载、再加载、过弹性范围卸载、再加载ddghf 即材料在卸载过程中即材料在卸载过程中应力和应变是线形关系,应力和应变是线形关系,这就是这就是卸载定律卸载定律。 材料的比例极限增高,材料的比例极限增高,延伸率降低,

11、称之为延伸率降低,称之为冷作硬冷作硬化或加工硬化化或加工硬化。282-4 2-4 材料拉伸时的力学性质材料拉伸时的力学性质四四 其它材料拉伸时的力学性其它材料拉伸时的力学性质质 对于没有明对于没有明显屈服阶段的塑显屈服阶段的塑性材料,用名义性材料,用名义屈服极限屈服极限p0.2p0.2来来表示。表示。o%2 . 02 . 0p292-4 2-4 材料拉伸时的力学性质材料拉伸时的力学性质obt 对于脆性材料(铸铁),拉伸时的应力对于脆性材料(铸铁),拉伸时的应力应变曲线为微弯的曲线,没有屈服和径缩现应变曲线为微弯的曲线,没有屈服和径缩现象,试件突然拉断。断后伸长率约为象,试件突然拉断。断后伸长率

12、约为0.5%0.5%。为典型的脆性材料。为典型的脆性材料。 btbt拉伸强度极限(约为拉伸强度极限(约为140MPa140MPa)。它是)。它是衡量脆性材料(铸铁)拉伸的唯一强度指标。衡量脆性材料(铸铁)拉伸的唯一强度指标。302-5 2-5 材料压缩时的力学性质材料压缩时的力学性质一一 试件和实验条件试件和实验条件常温、静载常温、静载2-52-5312-5 2-5 材料压缩时的力学性质材料压缩时的力学性质二二 塑性材料(低碳钢)的压缩塑性材料(低碳钢)的压缩屈服极限屈服极限S比例极限比例极限p弹性极限弹性极限e 拉伸与压缩在屈服拉伸与压缩在屈服阶段以前完全相同。阶段以前完全相同。E E -

13、- 弹性摸量弹性摸量322-5 2-5 材料压缩时的力学性质材料压缩时的力学性质三三 脆性材料(铸铁)的压缩脆性材料(铸铁)的压缩obtbc 脆性材料的抗拉与抗压脆性材料的抗拉与抗压性质不完全相同性质不完全相同 压缩时的强度极限远大压缩时的强度极限远大于拉伸时的强度极限于拉伸时的强度极限btbc332-5 2-5 材料压缩时的力学性质材料压缩时的力学性质342-6 2-6 拉压杆的强度条件拉压杆的强度条件一一 安全系数和许用应力安全系数和许用应力工作应力工作应力AFN nu极限应力极限应力塑性材料塑性材料脆性材料脆性材料)(2 . 0pSu)(bcbtu塑性材料的许用应力塑性材料的许用应力 s

14、pssnn2 . 0脆性材料的许用应力脆性材料的许用应力 bbcbbtnn2-62-6 n n 安全系数安全系数 许用应力许用应力。 352-6 2-6 拉压杆的强度条件拉压杆的强度条件二二 强度条件强度条件 AFNmax AFNmax根据强度条件,可以解决三类强度计算问题根据强度条件,可以解决三类强度计算问题1 1、强度校核:、强度校核: NFA2 2、设计截面:、设计截面: AFN3 3、确定许可载荷:、确定许可载荷:362-6 2-6 拉压杆的强度条件拉压杆的强度条件例题例题2-32-3 0yF解:解:1 1、研究节点、研究节点A A的平衡,计算轴力。的平衡,计算轴力。N1032. 52

15、0cos2101000cos253FFN 由于结构几何和受力的对称性,两由于结构几何和受力的对称性,两斜杆的轴力相等,根据平衡方程斜杆的轴力相等,根据平衡方程F F=1000kN=1000kN,b b=25mm=25mm,h h=90mm=90mm,=20=200 0 。=120MPa=120MPa。试校核斜杆的强度。试校核斜杆的强度。F FF Fb hABC0cos2NFF得得A2 2、强度校核、强度校核 由于斜杆由两个矩由于斜杆由两个矩形杆构成,故形杆构成,故A A=2=2bhbh,工作应力为,工作应力为 MPa120MPa2 .118P102 .11810902521032. 52665

16、abhFAFNN斜杆强度足够斜杆强度足够F FxyNFNF372-6 2-6 拉压杆的强度条件拉压杆的强度条件例题例题2-42-4D=350mmD=350mm,p=1MPap=1MPa。螺栓。螺栓 =40MPa=40MPa,求直径。求直径。pDF24每个螺栓承受轴力为总压力的每个螺栓承受轴力为总压力的1/61/6解:解: 油缸盖受到的力油缸盖受到的力根据强度条件根据强度条件 AFNmax 22.6mmm106 .22104061035. 0636622pDd即螺栓的轴力为即螺栓的轴力为pDFFN2246 NFA得得 24422pDd即即螺栓的直径为螺栓的直径为Dp382-6 2-6 拉压杆的强

17、度条件拉压杆的强度条件例题例题2-52-5 ACAC为为505050505 5的等边角钢,的等边角钢,ABAB为为1010号槽钢,号槽钢,=120MPa=120MPa。求。求F F。 0yFFFFN2sin/1解:解:1 1、计算轴力。(设斜杆为、计算轴力。(设斜杆为1 1杆,水平杆,水平杆为杆为2 2杆)用截面法取节点杆)用截面法取节点A A为研究对象为研究对象FFFNN3cos12 0 xF0cos21NNFF0sin1 FFN2 2、根据斜杆的强度,求许可载荷、根据斜杆的强度,求许可载荷 kN6 .57N106 .57108 . 4210120212134611AFA AF F1NF2N

18、Fxy查表得斜杆查表得斜杆ACAC的面积为的面积为A A1 1=2=24.8cm4.8cm2 2 11AFN392-6 2-6 拉压杆的强度条件拉压杆的强度条件FFFN2sin/1FFFNN3cos123 3、根据水平杆的强度,求许可载荷、根据水平杆的强度,求许可载荷 kN7 .176N107 .1761074.12210120732. 113134622AFA AF F1NF2NFxy查表得水平杆查表得水平杆ABAB的面积为的面积为A A2 2=2=212.74cm12.74cm2 2 22AFN4 4、许可载荷、许可载荷 kN6 .57176.7kNkN6 .57minminiFF402-

19、7 2-7 拉压杆的变形拉压杆的变形 胡克定律胡克定律一一 纵向变形纵向变形lll1AFll EAlFlNE二二 横向变形横向变形llbbb1bb钢材的钢材的E E约为约为200GPa200GPa,约为约为30.33E E为弹性摸量为弹性摸量, ,EAEA为抗拉刚度为抗拉刚度泊松比泊松比横向应变横向应变AFN2-72-7412-7 2-7 拉压杆的变形拉压杆的变形 胡克定律胡克定律422-7 2-7 拉压杆的变形拉压杆的变形 胡克定律胡克定律43例题例题2-62-6 ABAB长长2m, 2m, 面积为面积为200mm200mm2 2。ACAC面积为面积为250mm250m

20、m2 2。E E=200GPa=200GPa。F F=10kN=10kN。试求节点。试求节点A A的位移。的位移。 0yFkN202sin/1FFFN解:解:1 1、计算轴力。(设斜杆为、计算轴力。(设斜杆为1 1杆,水杆,水平杆为平杆为2 2杆)取节点杆)取节点A A为研究对象为研究对象kN32.173cos12FFFNN 0 xF0cos21NNFF0sin1 FFN2 2、根据胡克定律计算杆的变形。、根据胡克定律计算杆的变形。1mmm101102001020021020369311111AElFlNA AF F1NF2NFxy30300 02-7 2-7 拉压杆的变形拉压杆的变形 胡克定

21、律胡克定律mm6 . 0m106 . 01025010200732. 11032ElFlN斜杆伸长斜杆伸长水平杆缩短水平杆缩短443 3、节点、节点A A的位移(以切代弧)的位移(以切代弧)A AF F1NF2NFxy30300 02-7 2-7 拉压杆的变形拉压杆的变形 胡克定律胡克定律1mm11111AElFlNmm6 . 022222AElFlNAA 1A2AA A1A2Amm111lAAmm6 . 022lAAmm6 . 02lxmm039. 3039. 1230tan30sin21433llAAAAymm1 . 3039. 36 . 02222 yxAA3A

22、4A452-8 2-8 拉、压超静定问题拉、压超静定问题 约束反约束反力(轴力)力(轴力)可由静力平可由静力平衡方程求得衡方程求得静定结构:静定结构:2-82-8462-8 2-8 拉、压超静定问题拉、压超静定问题 约束反力不能约束反力不能由平衡方程求得由平衡方程求得超静定结构:结构的强度和刚度均得到提高超静定结构:结构的强度和刚度均得到提高超静定度(次)数:超静定度(次)数: 约束反力多于约束反力多于独立平衡方程的数独立平衡方程的数独立平衡方程数:独立平衡方程数:平面任意力系:平面任意力系: 3 3个平衡方程个平衡方程平面共点力系:平面共点力系: 2 2个平衡方程个平衡方程平面平行力系:平面

23、平行力系:2 2个平衡方程个平衡方程共线力系:共线力系:1 1个平衡方程个平衡方程472-8 2-8 拉、压超静定问题拉、压超静定问题1 1、列出独立的平衡方程、列出独立的平衡方程超静定结构的求解方法:超静定结构的求解方法:210NNxFFFFFFFNNy31cos202 2、变形几何关系、变形几何关系cos321lll3 3、物理关系、物理关系cos11EAlFlNEAlFlN334 4、补充方程、补充方程coscos31EAlFEAlFNN231cosNNFF5 5、求解方程组得、求解方程组得3221cos21cosFFFNN33cos21FFN1l2l3l例题例题2-72-7482-8

24、2-8 拉、压超静定问题拉、压超静定问题例题例题2-82-8变形协调关系变形协调关系:wstllFWFstF物理关系物理关系: :WWWWAElFlststststAElFl 平衡方程平衡方程: :stWFFF解:解:(1 1)WWWstststAEFAEF补充方程补充方程: :(2 2) 木制短柱的木制短柱的4 4个角用个角用4 4个个40mm40mm40mm40mm4mm4mm的等边角钢加固,的等边角钢加固, 已知角钢的许用应力已知角钢的许用应力 stst=160MPa=160MPa,E Estst=200GPa=200GPa;木材的许;木材的许用应力用应力 W W=12MPa=12MPa

25、,E EW W=10GPa=10GPa,求许可载荷,求许可载荷F F。F250250492-8 2-8 拉、压超静定问题拉、压超静定问题代入数据,得代入数据,得FFFFstW283. 0717. 0根据角钢许用应力,确定根据角钢许用应力,确定FstststAF283. 0kN698F根据木柱许用应力,确定根据木柱许用应力,确定FWWWAF717. 0kN1046F许可载荷许可载荷 kN698FF250250查表知查表知40mm40mm40mm40mm4mm4mm等边角钢等边角钢2cm086. 3stA故故 ,cm34.1242ststAA2cm6252525WA502-8 2-8 拉、压超静定

26、问题拉、压超静定问题3 3杆材料相同,杆材料相同,ABAB杆面积为杆面积为200200mmmm2 2,ACAC杆面积为杆面积为300300 mm mm2 2,ADAD杆面积为杆面积为400400 mm mm2 2,若若F=30F=30k kN N,试计算各杆的应力。,试计算各杆的应力。32lllADAB列出平衡方程:列出平衡方程:0 xF0320130cos30cosNNNFFFFFFFNNy030130sin30sin0即:即: 1323321NNNFFF 2231FFFNN列出变形几何关系列出变形几何关系 ,则则ABAB、ADAD杆长为杆长为l解:解:设设ACAC杆杆长为杆杆长为F F30

27、ABC30D123F FAxy1NF2NF3NF例题例题2-92-9512-8 2-8 拉、压超静定问题拉、压超静定问题 即:即: 1323321NNNFFF 2231FFFNN列出变形几何关系列出变形几何关系 F F30ABC30D123xyF FA1NF2NF3NFxyAAxy将将A A点的位移分量向各杆投点的位移分量向各杆投影影. .得得cossin1xylxl2cossin3xylcos2213lll变形关系为变形关系为 2133 lll代入物理关系代入物理关系22113333232EAlFEAlFEAlFNNN 322213NNNFFF整理得整理得522-8 2-8 拉、压超静定问题拉、压超静定问题 F F30ABC30D123xyF FA1NF2NF3NFxyAAxy 1323321N

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论