版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学建模与数学实验数学建模与数学实验 数学建模简介数学建模简介 数学建模简介数学建模简介 1.关于数学建模关于数学建模 2.数学建模实例数学建模实例 3.数学建模论文的撰写方法数学建模论文的撰写方法A.人口预报问题人口预报问题B. 椅子能在不平的地面上放稳吗?椅子能在不平的地面上放稳吗?C.双层玻璃的功效双层玻璃的功效1、什么是数学模型?、什么是数学模型? 数学模型数学模型是对于现实世界的一个特定对象特定对象,一个特定目的特定目的,根据特有的内在规律内在规律,做出一些必要的假必要的假设设,运用适当的数学工具数学工具,得到一个数学结构数学结构。 简单地说:就是系统的某种特征的本质的数学表达式(或
2、是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。一、名词解释一、名词解释2、什么是数学建模、什么是数学建模? 数学建模数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。 观点:观点:“所谓所谓高科技高科技就是一种就是一种数学技术数学技术” 数学建模数学建模其实并不是什么新东西,可以说有了数学并需要用数学去解决实际问题,就一定要用数学的语言、方法去近
3、似地刻划该实际问题,这种刻划的数学表述的就是一个数学模型,其过程就是数学建模的过程。数学模型一经提出,就要用一定的技术手段(计算、证明等)来求解并验证,其中大量的计算往往是必不可少的,高性能的计算机的出现使数学建模这一方法如虎添翼似的得到了飞速的发展,掀起一个高潮。 数学建模数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题、解决问题的能力的必备手段之一。 二、数学建模的一般方法和步骤二、数学建模的一般方法和步骤 建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征特征: 模型的可靠性可靠性和模型的使用性使用性建模的一般方法: 机
4、理分析 测试分析方法 机理分析机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。 测试分析方法:测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。 测试分析方法也叫做系统辩识系统辩识。 将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体
5、步骤大致可见右图。符合实际不符合实际交付使用,从而可产生经济、社会效益实际问题抽象、简化、假设 确定变量、参数建立数学模型并数学、数值地求解、确定参数用实际问题的实测数据等来检验该数学模型建模过程示意图 模型模型 数学模型的分类:数学模型的分类: 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、扩散模型等。 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。数学模型符号模型思维模型物理模型直观模型抽象模型具体模型图形模型数式模型三、数学模型及
6、其分类三、数学模型及其分类四、近几年全国大学生数学建模竞赛题四、近几年全国大学生数学建模竞赛题A 逢山开路 1994 B 锁具装箱 A 一个飞行管理问题 1995 B 天车与冶炼炉的作业调度 A 节水洗衣机问题 1996 B 最优捕鱼问题 A 零件的参数设计 1997 B 最优截断切割问题 A 投资的收益和风险 1998 B 灾情巡视路线 A 自动化车床管理 1999 B 钻井布局 A DNA 序列分类 2000 B 钢管订购和运输 返回返回 数学建模实例一数学建模实例一 1、椅子能在不平的地面上放稳吗?椅子能在不平的地面上放稳吗? 把四只脚的椅子往不平的地面上一放,通常只有三只脚着地,放不稳
7、,然而有人认为只要稍挪动几次,就可以四脚着地,放稳了,对吗?问题:1、椅子的位置如何表示? 2、椅脚着地如何表示?2、如何预报人口、如何预报人口? 要预报未来若干年(如2005)的人口数,最重要的影响因素是今年的人口数和今后这些年的增长率(即人口出生率减死亡率),根据这两个数据进行人口预报是很容易的。记今年人口为 ,k年后人口为 ,年增长率为r,则预报公式为: 预报正确的条件: 年增长率r保持不变。kkrxx100 xkx数学建模实例二数学建模实例二1、指数增长模型、指数增长模型(马尔萨斯人口模型): 英国人口学家马尔萨斯(Malthus17661834)于1798年提出。2、阻滞增长模型、阻滞增长模型(Logistic模型)3、更复杂的人口模型、更复杂的人口模型 随机性模型、考虑人口年龄分布的模型等 可见数学模型总是在不断的修改、完善使之能符合实际情况的变化。人口模型 怎样撰写数学建模的论文?怎样撰写数学建模的论文?1、摘要、摘要:问题、模型、方法、结果
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度山西省高校教师资格证之高等教育法规考试题库
- 国家自然基金简介(1)-资助研究项目属性(2)-资助研培训课件
- 2024年泥水工项目协议模板下载
- 2024年除雪作业协议细则
- 2024汽车购贷担保协议样本全文参阅
- 2024年办公室装修施工协议样本
- 2024年斗殴双方和解赔偿协议样式
- 中小学教师数据素养-江苏师范大学中国大学mooc课后章节答案期末考试题库2023年
- 岗位保密条款:2024劳动协议增补篇
- 2024年全职收银员劳动协议范本
- 《数字身份辩设备》课件+2024-2025学年人教版(2024)初中信息科技七年级全一册
- 2024小学数学义务教育新课程标准(2022版)必考题库附含答案
- 申请失业保险金承诺书
- 道路交通标志标线图解ppt课件
- “律师法学”课程教学大纲
- 【全面做好调研巡视问题整改工作表态发言】 巡视整改表态发言
- 锅炉结焦、打焦防范措施
- 腺病毒感染诊疗指南
- 服装洗水唛洗涤标志
- 分频器的简易计算与制作
- 碧水湾酒店员工手册初稿
评论
0/150
提交评论