版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、规范答题示例2导数与不等式的恒成立问题典例典例2(12分)设函数f(x)emxx2mx.(1)证明:f(x)在(,0)上单调递减,在(0,)上单调递增;(2)若对于任意x1,x21,1,都有|f(x1)f(x2)|e1,求m的取值范围.规规 范范 解解 答答分分 步步 得得 分分(1)证明证明f(x)m(emx1)2x.1分若m0,则当x(,0)时,emx10,f(x)0;当x(0,)时,emx10,f(x)0.若m0,则当x(,0)时,emx10,f(x)0;当x(0,)时,emx10,f(x)0.4分所以,f(x)在(,0)上单调递减,在(0,)上单调递增.6分(2)解解由(1)知,对任意
2、的m,f(x)在1,0上单调递减,在0,1上单调递增,故f(x)在x0处取得最小值所以对于任意x1,x21,1,|f(x1)f(x2)|e1的充要条件是设函数g(t)ette1,则g(t)et1. 9分当t0时,g(t)0;当t0时,g(t)0.故g(t)在(,0)上单调递减,在(0,)上单调递增.又g(1)0,g(1)e12e0,故当t1,1时,g(t)0.当m1,1时,g(m)0,g(m)0,即式成立;10分当m1时,由g(t)的单调性,得g(m)0,即emme1;当m1时,g(m)0,即emme1.11分综上,m的取值范围是1,1.12分构构 建建 答答 题题 模模 板板第一步求导数:求
3、导数:一般先确定函数的定义域,再求f(x)第二步定区间:定区间:根据f(x)的符号确定函数的单调区间第三步寻条件:寻条件:一般将恒成立问题转化为函数的最值问题第四步写步骤:写步骤:通过函数单调性探求函数最值,对于最值可能在两点取到的恒成立问题,可转化为不等式组恒成立第五步再反思:再反思:查看是否注意定义域、区间的写法、最值点的探求是否合理等.评分细则评分细则(1)求出导数给1分;(2)讨论时漏掉m0扣1分;两种情况只讨论正确一种给2分;(3)确定f(x)符号时只有结论无中间过程扣1分;(4)写出f(x)在x0处取得最小值给1分;(5)无最后结论扣1分;(6)其他方法构造函数同样给分解答(1)求函数f(x)的单调区间和极值;x(0,1)1(1,)f(x)0f(x)单调递增极大值单调递减因此函数f(x)的增区间为(0,1),减区间为(1,),极大值为f(1)1,无极小值.解答(2)若对任意的x1,恒有ln(x1)k1kx成立,求k的取
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论