版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、椭圆专题复习1. 椭圆定义:平面内与两个定点的距离之和为常数的动点的轨迹叫椭圆,其中两个定点叫椭圆的焦点.当时, 的轨迹为椭圆 ; ; 当时, 的轨迹不存在; 当时, 的轨迹为 以为端点的线段2.椭圆的方程与几何性质:标准方程性质参数关系焦点焦距范围顶点对称性关于x轴、y轴和原点对称离心率准线 考点1 椭圆定义及标准方程 题型1:椭圆定义的运用例1 椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A、B是它的焦点,长轴长为2a,焦距为2c,静放在点A的小球(小球的半径不计),从点A沿直线出发,经椭圆壁反弹后第一次回
2、到点A时,小球经过的路程是( )A4aB2(ac)C2(a+c)D以上答案均有可能【变式训练】1.短轴长为,离心率的椭圆两焦点为F1,F2,过F1作直线交椭圆于A、B两点,则ABF2的周长为 A.3 B.6 C.12 D.24 ( )2.已知为椭圆上的一点,分别为圆和圆上的点,则的最小值为 A 5 B 7 C 13 D 15 ( )题型2 求椭圆的标准方程 例2 设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为4,求此椭圆方程.【变式训练】3. 如果方程x2+ky2=2表示焦点在y轴的椭圆,那么实数k的取值范围是_.4. 椭圆对称轴在坐标
3、轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是,求这个椭圆方程.考点2 椭圆的几何性质 题型1:求椭圆的离心率(或范围)例3 在中,若以为焦点的椭圆经过点,则该椭圆的离心率 【变式训练】5.如果一个椭圆的长轴长是短轴长的两倍,那么这个椭圆的离心率为 ( ) . . . . 6.已知m,n,m+n成等差数列,m,n,mn成等比数列,则椭圆的离心率为 题型2:椭圆的其他几何性质的运用(范围、对称性等)例4 已知实数满足,求的最大值与最小值【变式训练】7.已知点是椭圆(,)上两点,且,则= 8.如图,把椭圆的长轴分成等份,过每个分点作轴的垂线交椭圆的上半部分于七个点,是
4、椭圆的一个焦点则_考点3 椭圆的最值问题例5 椭圆上的点到直线l:的距离的最小值为_【变式训练】9.椭圆的内接矩形的面积的最大值为 10. 是椭圆上一点,、是椭圆的两个焦点,求的最大值与最小值11.已知点是椭圆上的在第一象限内的点,又、,是原点,则四边形的面积的最大值是_考点4 椭圆的综合应用题型:椭圆与向量、解三角形的交汇问题例6 已知椭圆的中心为坐标原点,一个长轴端点为,短轴端点和焦点所组成的四边形为正方形,直线与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且(1)求椭圆方程;(2)求m的取值范围例7 、从椭圆上一点向轴引垂线,垂足恰为椭圆的左焦点,为椭圆的右顶点,是椭圆的上顶点,
5、且.、求该椭圆的离心率. 、若该椭圆满足,求椭圆方程.【变式训练】12.设过点的直线分别与轴的正半轴和轴的正半轴交于、两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是 ( ) A. B. C. D. 13. 如图,在RtABC中,CAB=90,AB=2,AC=,一曲线E过点C,动点P在曲线E上运动,且保持|PA|+|PB|的值不变,直线l经过A与曲线E交于M、N两点. (1)建立适当的坐标系,求曲线E的方程; (2)设直线l的斜率为k,若MBN为钝角,求k的取值范围.基础巩固训练1. 如图所示,椭圆中心在原点,F是左焦点,直线与BF交于D,且,则椭圆的离心率为( ) A B C D
6、 2. 设F1、F2为椭圆+y2=1的两焦点,P在椭圆上,当F1PF2面积为1时,的值为( ) A 0B 1C 2D 33.椭圆的一条弦被平分,那么这条弦所在的直线方程是 ( )A B C D4.在中,若以为焦点的椭圆经过点,则该椭圆的离心率 5. 已知为椭圆的两个焦点,P为椭圆上一点,若, 则此椭圆的离心率为 _.6.在平面直角坐标系中,椭圆1( 0)的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率= 综合提高训练7、已知椭圆与过点A(2,0),B(0,1)的直线l有且只有一个公共点T,且椭圆的离心率求椭圆方程8已知A、B分别是椭圆的左右两个焦点,O为坐标原点,点P)在
7、椭圆上,线段PB与y轴的交点M为线段PB的中点。 (1)求椭圆的标准方程; (2)点C是椭圆上异于长轴端点的任意一点,对于ABC,求的值。9. 已知长方形ABCD, AB=2,BC=1.以AB的中点为原点建立如图8所示的平面直角坐标系.()求以A、B为焦点,且过C、D两点的椭圆的标准方程;OABCD图8()过点P(0,2)的直线交()中椭圆于M,N两点,是否存在直线,使得以弦MN为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由. 椭圆专题复习1. 椭圆定义: 平面内与两个定点的距离之和为常数的动点的轨迹叫椭圆,其中两个定点叫椭圆的焦点.当时, 的轨迹为椭圆 ; 当时, 的轨迹不
8、存在; 当时, 的轨迹为 以为端点的线段2.椭圆的方程与几何性质:标准方程性质参数关系焦点焦距范围顶点对称性关于x轴、y轴和原点对称离心率准线 考点1 椭圆定义及标准方程 题型1:椭圆定义的运用例1 (湖北部分重点中学2009届高三联考)椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A、B是它的焦点,长轴长为2a,焦距为2c,静放在点A的小球(小球的半径不计),从点A沿直线出发,经椭圆壁反弹后第一次回到点A时,小球经过的路程是OxyDPABCQA4aB2(ac)C2(a+c)D以上答案均有可能 解析按小球的运行路
9、径分三种情况:(1),此时小球经过的路程为2(ac);(2), 此时小球经过的路程为2(a+c);(3)此时小球经过的路程为4a,故选D【名师指引】考虑小球的运行路径要全面【变式训练】1.短轴长为,离心率的椭圆两焦点为F1,F2,过F1作直线交椭圆于A、B两点,则ABF2的周长为A.3 B.6C.12 D.24 ( )解析C. 长半轴a=3,ABF2的周长为4a=122.已知为椭圆上的一点,分别为圆和圆上的点,则的最小值为 ( ) A 5 B 7 C 13 D 15 解析B. 两圆心C、D恰为椭圆的焦点,的最小值为10-1-2=7题型2 求椭圆的标准方程 例2 设椭圆的中心在原点,坐标轴为对称
10、轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为4,求此椭圆方程.【解题思路】将题中所给条件用关于参数的式子“描述”出来解析设椭圆的方程为或, 则,解之得:,b=c4.则所求的椭圆的方程为或.【名师指引】准确把握图形特征,正确转化出参数的数量关系警示易漏焦点在y轴上的情况【变式训练】3. 如果方程x2+ky2=2表示焦点在y轴的椭圆,那么实数k的取值范围是_.解析(0,1). 椭圆方程化为+=1. 焦点在y轴上,则2,即k0,0k0 (*)x1x2, x1x2 3 x13x2 消去x2,得3(x1x2)24x1x20,3()240整理得4k2m22m2k220 m2时,
11、上式不成立;m2时,k2,因3 k0 k20,1m 或 m2m22成立,所以(*)成立即所求m的取值范围为(1,)(,1) 【名师指引】椭圆与向量、解三角形的交汇问题是高考热点之一,应充分重视向量的功能例7椭圆上一点向轴引垂线,垂足恰为椭圆的左焦点,为椭圆的右顶点,是椭圆的上顶点,且.、求该椭圆的离心率. 若该椭圆满足,求椭圆方程.解析 、 ,,, 又,, 而. 为准线方程,, 由 所求椭圆方程为【变式训练】14.设过点的直线分别与轴的正半轴和轴的正半轴交于、两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是 ( ) A. B. C. D. 解析 ,选A.15. 如图,在RtABC中
12、,CAB=90,AB=2,AC=。一曲线E过点C,动点P在曲线E上运动,且保持|PA|+|PB|的值不变,直线l经过A与曲线E交于M、N两点。 (1)建立适当的坐标系,求曲线E的方程; (2)设直线l的斜率为k,若MBN为钝角,求k的取值范围。解:(1)以AB所在直线为x轴,AB的中点O为原点建立直角坐标系,则A(1,0),B(1,0)由题设可得动点P的轨迹方程为, 则曲线E方程为(2)直线MN的方程为由 方程有两个不等的实数根 MBN是钝角 即 解得:又M、B、N三点不共线 综上所述,k的取值范围是基础巩固训练1. 如图所示,椭圆中心在原点,F是左焦点,直线与BF交于D,且,则椭圆的离心率为
13、 ( ) A B C D 解析 B . 2. 设F1、F2为椭圆+y2=1的两焦点,P在椭圆上,当F1PF2面积为1时,的值为( ) A 0 B 1C 2D 3解析 A . , P的纵坐标为,从而P的坐标为,0, 3.椭圆的一条弦被平分,那么这条弦所在的直线方程是 ( )A B C D解析 D. ,两式相减得:,4.在中,若以为焦点的椭圆经过点,则该椭圆的离心率 解析5. 已知为椭圆的两个焦点,P为椭圆上一点,若, 则此椭圆的离心率为 _. 解析 三角形三边的比是6.在平面直角坐标系中,椭圆1( 0)的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率= 解析综合提高训练7、
14、已知椭圆与过点A(2,0),B(0,1)的直线l有且只有一个公共点T,且椭圆的离心率求椭圆方程解析直线l的方程为: 由已知由得:,即由得: 故椭圆E方程为8.已知A、B分别是椭圆的左右两个焦点,O为坐标原点,点P)在椭圆上,线段PB与y轴的交点M为线段PB的中点.(1)求椭圆的标准方程;(2)点C是椭圆上异于长轴端点的任意一点,对于ABC,求的值。解析(1)点是线段的中点 是的中位线 又 椭圆的标准方程为=1 (2)点C在椭圆上,A、B是椭圆的两个焦点 ACBC2a,AB2c2 在ABC中,由正弦定理, 9. 已知长方形ABCD, AB=2,BC=1.以AB的中点为原点建立如图8所示的平面直角坐标系.()求以A、B为焦点,且过C、D两点的椭圆的标准方程;OABCD()过点P(0,2)的直线交()
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋买卖合同贷款的审批流程3篇
- 旅游公司导游领队劳动合同模板3篇
- 摆脱责任书负担3篇
- 旅游产品经理雇佣合同3篇
- 旅游巴士租用合同
- 文艺演出化妆造型协调合同3篇
- 方居间合同工作范文3篇
- 工业设备拆除合同3篇
- 城市生态修复工程合同
- 学校运动场照明施工协议
- 西南大学马原复习考试修订版
- 全国各地区地磁场强度表
- 《实用日本语应用文写作》全套电子课件完整版ppt整本书电子教案最全教学教程整套课件
- 国家开放大学《人文英语3》章节测试参考答案
- 锅炉习题带答案
- 农村宅基地地籍测绘技术方案
- 【课件】Unit1ReadingforWriting课件高中英语人教版(2019)必修第二册
- 遗传分析的一个基本原理是DNA的物理距离和遗传距离方面...
- Agilent-E5061B网络分析仪使用方法
- 庞中华钢笔行书字帖(完整36后4张)课件
- 最新版入团志愿书填写模板
评论
0/150
提交评论