版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级八年级 上册上册13.3 等腰三角形等腰三角形 (第(第1课时)课时)课件说明课件说明 本节课是在学生已经学习了三角形的基本概念、全本节课是在学生已经学习了三角形的基本概念、全 等三角形和轴对称知识的基础上,进一步研究特殊等三角形和轴对称知识的基础上,进一步研究特殊 的三角形的三角形等腰三角形,研究等腰三角形的底角、等腰三角形,研究等腰三角形的底角、 底边上的中线、顶角平分线、底边上的高所具有的底边上的中线、顶角平分线、底边上的高所具有的 性质性质课件说明课件说明 学习目标:学习目标:1探索并证明等腰三角形的两个性质探索并证明等腰三角形的两个性质 2能利用性质证明两个角相等或两条线段相等
2、能利用性质证明两个角相等或两条线段相等3结合等腰三角形性质的探索与证明过程,体会轴结合等腰三角形性质的探索与证明过程,体会轴 对称在研究几何问题中的作用对称在研究几何问题中的作用 学习重点:学习重点: 探索并证明等腰三角形性质探索并证明等腰三角形性质 如图所示,把一张长方形的纸按图中虚线对折,并如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的剪去阴影部分,再把它展开,得到的ABC 有什么特点?有什么特点?探索并证明等腰三角形的性质探索并证明等腰三角形的性质 ABCD探索并证明等腰三角形的性质探索并证明等腰三角形的性质 仔细观察自己剪出的等腰三角形纸片,你能发现这仔细
3、观察自己剪出的等腰三角形纸片,你能发现这 个等腰三角形有什么特征吗?个等腰三角形有什么特征吗? 等腰三角形的特征等腰三角形的特征: :(1)等腰三角形的两个底角相等;等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底等腰三角形的顶角平分线、底边上的中线、底 边上的高互相重合边上的高互相重合探索并证明等腰三角形的性质探索并证明等腰三角形的性质 同学们剪下的等腰三角形纸片大小不同,形状各同学们剪下的等腰三角形纸片大小不同,形状各异,是否都具有上述所概括的特征?异,是否都具有上述所概括的特征?探索并证明等腰三角形的性质探索并证明等腰三角形的性质 在练习本上任意画一个等腰三角形,
4、把它剪下来,在练习本上任意画一个等腰三角形,把它剪下来,折一折,上面得出的结论仍然成立吗?由此你能概括出折一折,上面得出的结论仍然成立吗?由此你能概括出 等腰三角形的性质吗?等腰三角形的性质吗?探索并证明等腰三角形的性质探索并证明等腰三角形的性质 探索并证明等腰三角形的性质探索并证明等腰三角形的性质 等腰三角形的性质等腰三角形的性质: :(1)等腰三角形的两个底角相等;等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底等腰三角形的顶角平分线、底边上的中线、底 边上的高互相重合边上的高互相重合利用实验操作的方法,我们发现并概括出等腰三利用实验操作的方法,我们发现并概括出等腰
5、三角角形的性质形的性质1和性质和性质2对于性质对于性质1,你能通过严格的逻辑,你能通过严格的逻辑 推理证明这个结论吗?推理证明这个结论吗?(1)你能根据结论画出图形,写出已知、求证吗?)你能根据结论画出图形,写出已知、求证吗?(2)结合所画的图形,你认为证明两个底角相等的思)结合所画的图形,你认为证明两个底角相等的思 路是什么?路是什么?(3)如何在一个等腰三角形中构造出两个全等三角形)如何在一个等腰三角形中构造出两个全等三角形 呢?从剪图、折纸的过程中你能获得什么启发?呢?从剪图、折纸的过程中你能获得什么启发? 探索并证明等腰三角形的性质探索并证明等腰三角形的性质 已知:如图,已知:如图,A
6、BC 中,中,AB = =AC求证:求证:B = = C探索并证明等腰三角形的性质探索并证明等腰三角形的性质 ACD证明:证明:作底边的中线作底边的中线ADAB = =AC, BD = =CD, AD = =AD,ABD ACD(SSS)B =C你还有其他方法证明性质你还有其他方法证明性质1吗?吗?探索并证明等腰三角形的性质探索并证明等腰三角形的性质 可以作底边的高线或顶角的角平分线可以作底边的高线或顶角的角平分线. . ACD性质性质2可以分解为三个命题,本节课证明可以分解为三个命题,本节课证明“等腰三等腰三 角形的底边上的中线也是底边上的高和顶角平分线角形的底边上的中线也是底边上的高和顶角
7、平分线”探索并证明等腰三角形的性质探索并证明等腰三角形的性质 已知:如图,已知:如图,ABC 中,中,AB = =AC,AD 是底边是底边BC 的中线求证:的中线求证:BAD = =CAD,ADBC探索并证明等腰三角形的性质探索并证明等腰三角形的性质 ACD证明:证明:AD 是底边是底边BC 的中线,的中线,BD = =CD AB = =AC, BD = =CD, AD = =AD,ABD ACD(SSS)探索并证明等腰三角形的性质探索并证明等腰三角形的性质 已知:如图,已知:如图,ABC 中,中,AB = =AC,AD 是底边是底边BC 的中线求证:的中线求证:BAD = =CAD,ADBC
8、ACD证明:证明:BAD = =CAD, ADB = =ADC ADB + +ADC = =180, ADB = =90 ADBC探索并证明等腰三角形的性质探索并证明等腰三角形的性质 在等腰三角形性质的探索过程和证明过程中,在等腰三角形性质的探索过程和证明过程中,“折折 痕痕”“”“辅助线辅助线”发挥了非常重要的作用,由此,你能发发挥了非常重要的作用,由此,你能发 现等腰三角形具有什么特征?现等腰三角形具有什么特征? 等腰三角形是轴对称图形,底边上的中线(顶角平等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴分线、底边上的高)所在直线就是它的对称轴课堂练习课
9、堂练习 练习练习1填空:填空:(1)如图,)如图,ABC 中中, , AB = =AC, , A = =36, , 则则B = = ;ABC课堂练习课堂练习 练习练习1填空:填空:(2)如图,)如图,ABC 中中, , AB = =AC, , B = =36, , 则则A = = ; ABC课堂练习课堂练习 练习练习1填空:填空:(3)已知等腰三角形的一个内角为)已知等腰三角形的一个内角为70, ,则它的另外两则它的另外两 个内角的度数分别是个内角的度数分别是 . .课堂练习课堂练习 练习练习2如图,如图,ABC 是等腰直角三角形(是等腰直角三角形(AB = =AC,BAC = =90),),AD 是底边是底边BC 上的高,标出上的高,标出B,C,BAD,DAC 的的度数,并写出图中所有相等的度数,并写出图中所有相等的 线段线段. .ABCD课堂练习课堂练习 练习练习3如图如图,ABC 中,中,AB = =AC,点,点D 在在AC 上,上, 且且BD = =BC = =AD求求ABC 各角的度数各角的度数ABCD(1)本节课学习了哪些
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJF 2177-2024防雷元件测试仪校准规范
- 2024年度年福建省高校教师资格证之高等教育学自测模拟预测题库
- 2024年度山西省高校教师资格证之高等教育心理学题库练习试卷B卷附答案
- 2024年橡胶、橡塑制品项目投资申请报告代可行性研究报告
- 2024年一氧化二氮项目资金筹措计划书代可行性研究报告
- 版权授权合同6篇
- 电动汽车集中充换电设施规划和优化运行研究综述
- 2024年度成品买卖协议范本
- 2024年产品销售代理化协议模板
- 2024年理想婚庆场地租赁协议模板
- GB/T 23586-2022酱卤肉制品质量通则
- 2024CSCO肿瘤相关性贫血临床实践指南解读
- JBT 106-2024 阀门的标志和涂装(正式版)
- 科技成果评估规范
- 口腔颌面部血管瘤的诊断与治疗
- 校园文创产品设计方案(2篇)
- MH 5006-2015民用机场水泥混凝土面层施工技术规范
- 中国特色社会主义期末测试题中职高教版
- 新能源电动汽车充换电站设施建设项目可行性研究报告
- 医院培训课件:《危急值报告管理制度》
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
评论
0/150
提交评论