版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、定积分 积分学积分学不定积分不定积分定积分定积分 第五章 目录 上页 下页 返回 结束 一、定积分问题举例一、定积分问题举例二、二、 定积分的定义定积分的定义三、三、 定积分的近似计算定积分的近似计算定积分的概念及性质 第五章 四、四、 定积分的性质定积分的性质目录 上页 下页 返回 结束 1. 曲边梯形的面积曲边梯形的面积设曲边梯形是由连续曲线)0)()(xfxfy,轴及x以及两直线bxax,所围成 , 求其面积 A .?A)(xfy 矩形面积ahhaahb梯形面积)(2bahyOxab目录 上页 下页 返回 结束 1xix1ixxabyO1) 大化小大化小.在区间 a , b 中任意插入
2、n 1 个分点bxxxxxann1210,1iiixx用直线ixx 将曲边梯形分成 n 个小曲边梯形;2) 常代变常代变.在第i 个窄曲边梯形上任取作以,1iixx为底 ,)(if为高的小矩形, 并以此小矩形面积近似代替相应窄曲边梯形面积,iA得1()(iiiiiiAfxxxx),2, 1,nii目录 上页 下页 返回 结束 1niiAA1()niiifx4) 取极限取极限. 令1max ,iinx则曲边梯形面积niiAA10limniiixf10)(lim1xix1ixxabyOi目录 上页 下页 返回 结束 设某物体作直线运动, ,)(21TTCtvv且,0)(tv求在运动时间内物体所经过
3、的路程 s.解决步骤解决步骤:1) 大化小大化小., ,1iiitt任取将它分成, ),2, 1(,1nittii在每个小段上物体经2) 常代变常代变.,)(代替变速以iv得iiitvs)(,1,21个分点中任意插入在nTT),2, 1(nisi), 2, 1(ni已知速度n 个小段过的路程为目录 上页 下页 返回 结束 iniitvs1)(4) 取极限取极限 .iniitvs10)(lim)max(1init上述两个问题的共性: 解决问题的方法步骤相同 :“大化小 , 常代变 , 近似和 , 取极限 ” 所求量极限结构式相同: 特殊乘积和式的极限目录 上页 下页 返回 结束 Oab x,)(
4、上定义在设函数baxf的若对,ba任一种分法,210bxxxxan,1iiixxx令任取, ,1iiixxi时只要0max1inix1, ( )niiifx总趋于确定的极限 I , 则称此极限 I 为函数)(xf在区间,ba上的定积分,1xix1ixbaxxfd)(即baxxfd)(iniixf10)(lim此时称 f ( x ) 在 a , b 上可积 .记作目录 上页 下页 返回 结束 baxxfd)(iniixf10)(lim积分上限积分下限被积函数被积表达式积分变量积分和称为积分区间,ba定积分仅与被积函数及积分区间有关 , 而与积分变量用什么字母表示无关 , 即baxxfd)(bat
5、tfd)(bauufd)(目录 上页 下页 返回 结束 Axxfxfbad)(,0)(曲边梯形面积baxxfxfd)(,0)(曲边梯形面积的负值abyx1A2A3A4A5A54321d)(AAAAAxxfba各部分面积的代数和AO目录 上页 下页 返回 结束 O1 xyninix1,nii取),2, 1(ni定理定理1.上连续在函数,)(baxf.,)(可积在baxf定理定理2.,)(上有界在函数baxf且只有有限个间断点 (证明略)例例1. 利用定义计算定积分利用定义计算定积分.d102xx解解: 将 0,1 n 等分, 分点为niix ), 1 ,0(ni.,)(可积在baxf2xy ii
6、iixxf2)(则32ni目录 上页 下页 返回 结束 iinixf)(1niin1231) 12)(1(6113nnnn)12)(11 (61nniniixxx120102limdnlim31)12)(11 (61nn注 O1 xyni2xy 注. 当n 较大时, 此值可作为 的近似值xx d102,133) 1(233nnnn得133) 1(233nnnn1) 1( 3) 1( 3) 1(233nnnn1131312233两端分别相加, 得1) 1(3n)21 ( 3nn即nnn3323nii12332) 1( nnnnii1261) 12)(1(nnn)21 ( 3222n目录 上页 下
7、页 返回 结束 121lim)2(ppppnnnnnipn1lim1nixxpd10iixninnin111lim) 1 (121lim)2(ppppnnn解解:ninnin111lim) 1 (nninin11lim1iixxxd110Ox1ni 1ni目录 上页 下页 返回 结束 , ,)(baCxf设,d)(存在则baxxf根据定积分定义可得如下近似计算方法:), 1 ,0(nixiaxi,nabx), 1 ,0()(niyxfii记baxxfd)(xyxyxyn110)(110nnabyyy将 a , b 分成 n 等份: Oabxyix1ix1. 左矩形公式)(21nnabyyyba
8、xxfd)(xyxyxyn212. 右矩形公式目录 上页 下页 返回 结束 baxxfd)(xyyii211)()(21110nnyyyynab11niabxOyix1ixayObx12 ixix222 ixmx20 xbaxxfd)(imiimimyyyymab211121202464. 抛物线法公式baxxfd)(等分,分成将mnba2,xyyyiii2)4(6121222)4(621222iiiyyymab上作抛物线(如图)4(6212221iiimiyyymabimiimimyyyymab21112120246,222iixx在ayObx12 ixix222 ixmx20 x则以抛物线
9、为顶的小曲边梯形面积经推导可得:目录 上页 下页 返回 结束 xxId14102解解: :计算计算yi(yi(见右表见右表) )的近似值.13993. 3I14159. 3Iixiyi00.04.0000010.13.9604020.23.8461530.33.6697240.43.4482850.53.2000060.62.9411870.72.6845680.82.4390290.92.20994101.02.00000(取 n = 10, 计算时取5位小数)用梯形公式得用抛物线法公式得积分准确值为1415926. 3d14102xxI计算定积分目录 上页 下页 返回 结束 (设所列定积分
10、都存在)abbaxxfxxfd)(d)(. 10d)(aaxxfbaxd. 2xxfkxxfkbabad)(d)(. 3( k 为常数)bababaxxgxxfxxgxfd)(d)(d)()(. 4证证:iiinixgf)()(lim10左端iiniiinixgxf)(lim)(lim1010= 右端ab目录 上页 下页 返回 结束 bccabaxxfxxfxxfd)(d)(d)(. 5证证: 当当bca时,因)(xf在,ba上可积 ,所以在分割区间时, 可以永远取 c 为分点 , 于是,)(baiixf,)(caiixf,)(bciixf0令baxxfd)(caxxfd)(bcxxfd)(a
11、bc目录 上页 下页 返回 结束 abc,cba则有caxxfd)(baxxfd)(cbxxfd)(caxxfd)(baxxfd)(cbxxfd)(caxxfd)(bcxxfd)(目录 上页 下页 返回 结束 0)(1iinixf那么.0d)(xxfba证证:,0)(xfbaxxfd)(0)(lim10iinixf推论推论1. 若在若在 a , b 上上, )()(xgxf那么xxfbad)(xxgbad)(目录 上页 下页 返回 结束 xxfbad)(xxfbad)(证证:)( xf)(xf)(xf)(ba xxfxxfxxfbababad)(d)(d)(即xxfxxfbabad)(d)(7
12、. 设设, )(min, )(max,xfmxfMbaba那么)(d)()(abMxxfabmba)(ba 目录 上页 下页 返回 结束 .2dsin120 xxx证证: 设设)(xf,sinxx则在),0(2上, 有)(xf2sincosxxxx)tan(xx2cosxx0)0()()(fxff2即2, 1)(xf), 0(x2故xxxfxd1d)(d2220002即2dsin120 xxx目录 上页 下页 返回 结束 , ,)(baCxf若则至少存在一点, ,ba使)(d)(abfxxfba证证: :,)(Mmbaxf别为上的最小值与最大值分在设则由性质7 可得Mxxfabmbad)(1根
13、据闭区间上连续函数介值定理,上至少存在一在,ba, ,ba点使xxfabfbad)(1)(因此定理成立.性质7 目录 上页 下页 返回 结束 Oxbay)(xfy .都成立或baba 可把)(d)(fabxxfba.,)(上的平均值在理解为baxf故它是有限个数的平均值概念的推广. 积分中值定理对abxxfbad)(因nabfabniin)(lim11)(1lim1niinfn目录 上页 下页 返回 结束 计算从 0 秒到 T 秒这段时间内自由落体的平均速度. 解解: 已知自由落体速度为已知自由落体速度为tgv 故所求平均速度v2211TgT2TgTttg0d01TOtgv vTt221TgS 目录 上页 下页 返回 结束 1. 定积分的定义 乘积和式的极限2. 定积分的性质3. 积分中值定理矩形公式 梯形公式连续函数在区间上的平均值公式近似计算抛物线法公式目录 上页 下页 返回 结束 OxO1xn1n2nn 11. 用定积分表示下述极限 :nnnnnIn) 1(sin2sinsin1lim解解:10sinlimnknnkI1n0dsin1xxnn2nn) 1( 或)(sinlim10nknnkIn110dsinxx目录 上页 下页 返回 结束 如何用定积分表示下述极限 nnnnnnIn) 1(sinsin2sin1lim提示提示:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 军事行业安全工作总结
- 构建良好班级氛围的培训总结
- 《新脑血管病的预防》课件
- 2024年江苏省泰州市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2022年江西省景德镇市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2021年青海省西宁市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2023年湖北省宜昌市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2022年河南省洛阳市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2024年云南省丽江市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 《危险货物运输包装》课件
- 书法知识之章法布局
- 2023乙型肝炎病毒标志物临床应用专家共识(完整版)
- 23J916-1:住宅排气道(一)
- 储能项目用户侧投资测算表
- 【解析】教科版(广州)2023-2023学年小学英语五年级上册分类专项复习卷:阅读
- 月日上午王一凡把问题当做教育的资源 优秀奖
- 脊柱四肢及肛门直肠检查
- 高中政治期末综合检测部编版选修1
- 铸造基础知识及常见铸造缺陷简介课件
- 历史(中职)PPT全套教学课件
- 药物分离技术教材吴昊课后参考答案
评论
0/150
提交评论