版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、§2.1 平面向量的实际背景及基本概念 (一)向量的概念:我们把既有大小又有方向的量叫向量 4、零向量、单位向量概念:长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:方向相同或相反的非零向量叫平行向量;我们规定0与任一向量平行.说明:(1)综合、才是平行向量的完整定义;(2)向量、平行,记作.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量与相等,记作;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来
2、表示,并且与有向线段的起点无关.7、共线向量与平行向量关系:平行向量就是共线向量,说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.§2.2.1 向量的加法运算及其几何意义二、探索研究:、向量的加法:求两个向量和的运算,叫做向量的加法.、三角形法则(“首尾相接,首尾连”)如图,已知向量a、.在平面内任取一点,作a,则向量叫做a与的和,记作a,即 a,规定: a + 0-= 0 +aa aABCa+ba+baabbaa探究:(1)两相向量的和仍是一个向量;(2)当向量与不共线时,+的方向不同向,且|+|&
3、lt;|+|;OABaaabbb(3)当与同向时,则+、同向,且|+|=|+|,当与反向时,若|>|,则+的方向与相同,且|+|=|-|;若|<|,则+的方向与相同,且|+b|=|-|.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加加法的交换律和平行四边形法则)向量加法的平行四边形法则(对于两个向量共线不适应)向量加法的交换律:+=+向量加法的结合律:(+) +=+ (+)§2.2.2 向量的减法运算及其几何意义一、 提出课题:向量的减法1 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a长度相同、方向相反的向量.
4、记作 -a(2) 规定:零向量的相反向量仍是零向量.-(-a) = a. 任一向量与它的相反向量的和是零向量.a + (-a) = 0 如果a、b互为相反向量,则a = -b, b = -a, a + b = 0 (3) 向量减法的定义:向量a加上的b相反向量,叫做a与b的差. 即:a - b = a + (-b) 求两个向量差的运算叫做向量的减法.2 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a,则x叫做a与b的差,记作a - b3 求作差向量:已知向量a、b,求作向量 §2.3.1 平面向量基本定里1实数与向量的积:实数与向量的积是一个向量
5、,记作:(1)|=|;(2)>0时与方向相同;<0时与方向相反;=0时=2运算定律结合律:()=() ;分配律:(+)=+, (+)=+ 3. 向量共线定理 向量与非零向量共线的充要条件是:有且只有一个非零实数,使=.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1,2使=1+2.和 §2.3.2§2.3.3 平面向量的正交分解和坐标表示及运算1平面向量的坐标表示 如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得我们把叫做向
6、量的(直角)坐标,记作其中叫做在轴上的坐标,叫做在轴上的坐标,式叫做向量的坐标表示.与相等的向量的坐标也为.特别地,.如图,在直角坐标平面内,以原点O为起点作,则点的位置由唯一确定.设,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2平面向量的坐标运算(1) 若,则,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为、,则即,同理可得(2) 若,则一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.=-=( x2, y2) - (x1,y1)= (x2- x1, y2- y1)(3)若和
7、实数,则.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为、,则,即§2.3.4 平面向量共线的坐标表示 (¹)的充要条件是x1y2-x2y1=0 例5 已知A(-1, -1), B(1,3), C(1,5) ,D(2,7) ,向量与平行吗?直线AB与平行于直线CD吗? 解:=(1-(-1), 3-(-1)=(2, 4) , =(2-1,7-5)=(1,2) 又 2×2-4×1=0 又 =(1-(-1), 5-(-1)=(2,6) ,=(2, 4),2×4-2×6¹0 与不平行 A,B,C不共线 AB与CD不
8、重合 ABCD一、 平面向量的数量积的物理背景及其含义6线段的定比分点及 P1, P2是直线l上的两点,P是l上不同于P1, P2的任一点,存在实数,使 =,叫做点P分所成的比,有三种情况:>0(内分) (外分) <0 (<-1) ( 外分)<0 (-1<<0)7. 定比分点坐标公式:若点P(x1,y1) ,(x2,y2),为实数,且,则点P的坐标为(),我们称为点P分所成的比.8. 点P的位置与的范围的关系:当时,与同向共线,这时称点P为的内分点.当()时,与反向共线,这时称点P为的外分点.9.线段定比分点坐标公式的向量形式:在平面内任取一点O,设,可得=
9、.二、讲解新课:1两个非零向量夹角的概念已知非零向量与,作,则()叫与的夹角.2平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量|a|b|cosq叫与的数量积,记作a×b,即有a×b = |a|b|cosq,().并规定0与任何向量的数量积为0.×探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分.符号“· ”在向量
10、运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a¹0,且a×b=0,则b=0;但是在数量积中,若a¹0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.(4)已知实数a、b、c(b¹0),则ab=bc Þ a=c.但是a×b = b×c a = c 如右图:a×b = |a|b|cosb = |b|OA|,b×c = |b|c|cosa = |b|OA|Þ a×b = b×c 但a ¹ c (5)在实数中,有(a
11、215;b)c = a(b×c),但是(a×b)c ¹ a(b×c) 显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线.3“投影”的概念:作图 定义:|b|cosq叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当q为锐角时投影为正值;当q为钝角时投影为负值;当q为直角时投影为0;当q = 0°时投影为 |b|;当q = 180°时投影为 -|b|.4向量的数量积的几何意义:数量积a×b等于a的长度与b在a方向上投影|b|cosq的乘积.5两个向量的数量积的性质:设a、b为两个非零向量,
12、e是与b同向的单位向量.1° e×a = a×e =|a|cosq2° ab Û a×b = 03° 当a与b同向时,a×b = |a|b|;当a与b反向时,a×b = -|a|b|. 特别的a×a = |a|2或4° cosq =5° |a×b| |a|b|三、讲解范例:例6 已知,当,与的夹角是60°时,分别求·.解:当时,若与同向,则它们的夹角°,··cos0°3×6×118;若与
13、反向,则它们的夹角180°,·cos180°3×6×(-1)18;当时,它们的夹角90°,·;当与的夹角是60°时,有·cos60°3×6×9评述:两个向量的数量积与它们的夹角有关,其范围是0°,180°,因此,当时,有0°或180°两种可能.二、平面向量数量积的运算律二、讲解新课:平面向量数量积的运算律1交换律:a × b = b × a证:设a,b夹角为q,则a × b = |a|b|cosq,b
14、215; a = |b|a|cosq a × b = b × a2数乘结合律:(a)×b =(a×b) = a×(b)证:若> 0,(a)×b =|a|b|cosq, (a×b) =|a|b|cosq,a×(b) =|a|b|cosq,若< 0,(a)×b =|a|b|cos(p-q) = -|a|b|(-cosq) =|a|b|cosq,(a×b) =|a|b|cosq,a×(b) =|a|b|cos(p-q) = -|a|b|(-cosq) =|a|b|cosq.3分配
15、律:(a + b)×c = a×c + b×c 说明:(1)一般地,(·)(·)(2)··,0(3)有如下常用性质:,()()····()·三、讲解范例:例1 已知a、b都是非零向量,且a + 3b与7a - 5b垂直,a - 4b与7a - 2b垂直,求a与b的夹角.解:由(a + 3b)(7a - 5b) = 0 Þ 7a2 + 16a×b -15b2 = 0 (a - 4b)(7a - 2b) = 0 Þ 7a2 - 30a×b
16、+ 8b2 = 0 两式相减:2a×b = b2代入或得:a2 = b2设a、b的夹角为q,则cosq = q = 60°例评述:(1)在四边形中,是顺次首尾相接向量,则其和向量是零向量,即0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系.三、平面向量数量积的坐标表示、模、夹角二、讲解新课: 平面两向量数量积的坐标表示已知两个非零向量,试用和的坐标表示.设是轴上的单位向量,是轴上的单位向量,那么,所以又,所以这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即2. 平面内两点间的距离公式二、 设,则或.(2)如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式)三、 向量垂直的判定设,则四、 两向量夹角的余弦() cosq =五、 讲解范例:例3 已知a = (3, -1),b = (1, 2),求满足x×a = 9与x×b = -4的向量x. 解:设x = (t, s), 由 x = (2, -3)例4 已知a(,),b(,),则a与b的夹角是多少?分析:为求a与b夹角,需先求a·b及a·b,再结合夹角的范围确定其值.解:由a(,),b(,)有a·b(),a,b记
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陶瓷厂给水管道施工合同
- 印刷厂纸张物料员聘用合同
- 2024年版高级酒店宴会厅租赁合同范本版B版
- 2024年版城市基础设施建设项目承包合同
- 建筑节能工程成本管理
- 2024年标准机器人服务合同模板版B版
- 侵权责任律师聘用合同
- 珠宝行业税务登记流程
- 2024年新型蔬菜种植项目承包经营协议3篇
- 交通运输行业职工聘用合同
- GB/T 18367-2001公路收费方式
- 新疆生产建设兵团2022-2023学年数学七上期末质量检测试题含解析
- 2022年中山市房地产市场年度报告-世联研究
- FZ/T 62039-2019机织婴幼儿睡袋
- 【人类命运共同体论文】浅谈“人类命运共同体”
- ARCGIS10基础培训课件
- 课件:第一章 导论(《现代社会福利思想》课程)
- 第七章-期权的组合策略-《金融工程》课件
- 见证取样和送检见证人员备案表
- 明星志愿3及资料设定集总攻略打印版
- 铁路专用线管理模式比较
评论
0/150
提交评论