仁怀市第四中学初高中数学衔接知识讲义_第1页
仁怀市第四中学初高中数学衔接知识讲义_第2页
仁怀市第四中学初高中数学衔接知识讲义_第3页
仁怀市第四中学初高中数学衔接知识讲义_第4页
仁怀市第四中学初高中数学衔接知识讲义_第5页
已阅读5页,还剩68页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、仁怀市第四中学初高中数学衔接知识讲义第一部分 如何做好初高中衔接 第二部分 现有初高中数学知识存在的“脱节” 第三部分 初中数学与高中数学衔接紧密的知识点 第四部分 分章节讲解 第一章: 数的运算 第二章:代数式及恒等变形第三章: 因式分解第四章: 解方程与方程组第五章: 一元二次方程根与系数的关系第六章: 二次函数的图像和性质第七章: 二次函数最值及其应用第八章: 圆第九章: 三角形的“四心”第一部分 如何做好高、初中数学的衔接一 如何学好高中数学 初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。但经过一段时间,他们普遍感觉高中数学并非想象中那么

2、简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。下面就对造成这种现象的一些原因加以分析、总结。希望同学们认真吸取前人的经验教训,搞好自己的数学学习。二 高中数学与初中数学特点的变化1.数学语言在抽象程度上突变。不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“

3、玄”。确实,初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。2.思维方法向理性层次跃迁。高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。因此,初中学习中习惯于这种机械的、便于操作的定势方式。高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。当然,能力的发展是渐进的,不是一

4、朝一夕的。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。3.知识内容的整体数量剧增。高中数学在知识内容的“量”上急剧增加了。新课标数学教材有必修15共5本,理科有选修21、22、23共三本,文科有选修11、12共两本,专题选讲从41、44、45中选学一本,目前我校选择44讲解,也就是说读理科有9本,文科有8本。使得数学课时很紧,因而教学进度一般较快,从而增加了教与学的难度。这样,不可避免地造成学生不适应高中数学学习,而影响成绩的提高。这就要求:第一,要做好课后的复习工作,记牢大量的知识。第二,要理

5、解掌握好新旧知识的内在联系,使新知识顺利地同化于原有知识结构之中。第三,因知识教学多以零星积累的方式进行的,当知识信息量过大时,其记忆效果不会很好,因此要学会对知识结构进行梳理,形成板块结构,实行“整体集装”。如表格化,使知识结构一目了然;类化,由一例到一类,由一类到多类,由多类到统一;使几类问题同构于同一知识方法。第四,要多做总结、归类,建立主体的知识结构网络。三 不良的学习状态1.学习习惯因依赖心理而滞后。初中生在学习上的依赖心理是很明显的。第一,为提高分数,初中数学教师将各种题型都一一罗列,学生依赖于教师为其提供套用的“模子”;第二,家长望子成龙心切,回家后辅导也是常事。升入高中后,教师

6、的教学方法变了,套用的“模子”没有了,家长辅导的能力也跟不上了。许多同学进入高中后,还象初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。2.思想松懈。有些同学把初中的那一套思想移植到高中来。他们认为自已在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中,有的还是重点中学里的重点班,因而认为读高中也不过如此。高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。存有这种思想的同学是大错特错的。有多少同学

7、就是因为高一、二不努力学习,临近高考了,发现自己缺漏了很多知识再弥补后悔晚矣。3.学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆;课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。还有些同学晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。4.不重视基础。一些“自我感觉良好”的同学,常轻视基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真

8、演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。5.进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数值的求法、实根分布与参变量的讨论、,三角公式的变形与灵活运用、空间概念的形成、排列组合应用题及实际应用问题等。有的内容还是初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,就必然会跟不上高中学习的要求。四 科学地进行学习高中学生仅仅想学是不够的,还必须“会学”

9、,要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩。1.培养良好的学习习惯。反复使用的方法将变成人们的习惯。什么是良好的学习习惯?良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。2.制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。3.课前自学是上好新课、取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。自学不能走过场,要讲究质量

10、,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。4.上课是理解和掌握基础知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。5.及时复习是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。6.独立完成作业,通过自己的独立思考,灵活地分析问题、解决问题,进一步加深

11、对所学新知识的理解和对新技能的掌握过程。这一过程也是对意志毅力的考验,通过运用使对所学知识由“会”到“熟”。7.解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的知识拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,使所学到的知识由“熟”到“活”。8.系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料

12、,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。 第二部分,现有初高中数学知识存在以下“脱节”1立方和与差的公式初中已删去不讲,而高中的运算还在用。2因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。3二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。4初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作

13、简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。5二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。6图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。7含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成

14、为高考综合题。8几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。第三部分 初中数学与高中数学衔接紧密的知识点 1 绝对值在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。正数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即两个负数比较大小,绝对值大的反而小两个绝对值不等式:;或2 乘法公式:平方差公式:立方差公式:立方和公式:完全平方公式:,完全立方公式:3 分解因式把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项

15、式分解因式。方法:提公因式法,运用公式法,分组分解法,十字相乘法。4 一元一次方程在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。关于方程解的讨论当时,方程有唯一解;当,时,方程无解 当,时,方程有无数解;此时任一实数都是方程的解。5 二元一次方程组(1)两个二元一次方程组成的方程组叫做二元一次方程组。(2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。(3)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。(4)解二元一次方程组的方法:代入消元法,加减消元法。6

16、 不等式与不等式组(1)不等式:用符不等号(、)连接的式子叫不等式。不等式的两边都加上或减去同一个整式,不等号的方向不变。不等式的两边都乘以或者除以一个正数,不等号方向不变。不等式的两边都乘以或除以同一个负数,不等号方向相反。(2)不等式的解集:能使不等式成立的未知数的值,叫做不等式的解。一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式解集的过程叫做解不等式。(3)一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。(4)一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组中各个

17、不等式的解集的公共部分,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。7 一元二次方程:方程有两个实数根 方程有两根同号 方程有两根异号 韦达定理及应用:, 8 函数(1)变量:因变量,自变量 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。(2)一次函数:若两个变量,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。当=0时,称是的正比例函数。(3)一次函数的图象及性质把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。正比

18、例函数=的图象是经过原点的一条直线。在一次函数中,当0, O,则经2、3、4象限;当0,0时,则经1、2、4象限;当0, 0时,则经1、3、4象限;当0, 0时,则经1、2、3象限。当0时,的值随值的增大而增大,当0时,的值随值的增大而减少。(4)二次函数:一般式:(),对称轴是顶点是;顶点式:(),对称轴是顶点是;交点式:(),其中(),()是抛物线与x轴的交点(5)二次函数的性质 函数的图象关于直线对称。时,在对称轴 ()左侧,值随值的增大而减少;在对称轴()右侧;的值随值的增大而增大。当时,取得最小值时,在对称轴 ()左侧,值随值的增大而增大;在对称轴()右侧;的值随值的增大而减少。当时

19、,取得最大值9 图形的对称(1)轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。(2)中心对称图形:在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。中心对称图形上的每一对对应点所连成的线段都被对称中心平分。10 平面直角坐标系(1)在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做轴或横轴,铅直的数轴叫做轴或纵轴,轴与轴统称坐标轴,他们的公共原点称为直角坐标系的原点。(

20、2)平面直角坐标系内的对称点:设,是直角坐标系内的两点,若和关于轴对称,则有。若和关于轴对称,则有。若和关于原点对称,则有。若和关于直线对称,则有。若和关于直线对称,则有或。11 统计与概率:(1)各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。(2)平均数:对于个数,我们把()叫做这个个数的算术平均数,记为。(3)中位数与众数:个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。一组数据中出现次数最多的那个数据叫做这个组数据的众数。优劣比较:平

21、均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。(4)调查:为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的

22、调查结果,抽样时要主要样本的代表性和广泛性。(5)频数与频率:每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。(6)数据的波动:极差是指一组数据中最大数据与最小数据的差。方差是各个数据与平均数之差的平方和的平均数。标准差就是方差的算术平方根。一般来说,一组数据的极差,方差,或标准差越小,这组数据就越稳定。(7)事件的可能性:有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。有很多事情我们无法肯定他会不会发生

23、,这些事情称为不确定事件。一般来说,不确定事件发生的可能性是有大小的。(8)概率:人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。游戏对双方公平是指双方获胜的可能性相同。必然事件发生的概率为1,记作(必然事件);不可能事件发生的概率为,记作(不可能事件);如果A为不确定事件,那么第四部分 分章节讲解第一章 数的运算知识要点1、正数与负数:大于0的数叫做正数,在正数前面加上负号“”的数叫做负数,数0既不是正数,也不是负数。2、有理数:整数可以看作分母为1的分数,正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。3、相反数:像和,和

24、这样,只有符号不同的两个数叫做互为相反数。4、绝对值:数轴上表示数的点与原点的距离叫做数的绝对值,记作,由定义可得5、有理数的运算法则(1)加法交换律:(2)加法结合律:(3)减法法则:(4)乘法交换律:(5)乘法结合律:(6)分配律:(7) (为任何数)(8) ()6、乘方:求个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在中,叫做底数,叫做指数,当看作的次方的结果时,也可读作的次幂,即7. 单项式:式子,它们都是数或字母的积,像这样的式子叫做单项式,单独的一个数或一个字也是单项式。单项式中的数字因数叫做这个单项式的系数。例如,单项式,的系数分别是,单项式表示数字与字母相乘时,通常把数字写

25、在前面,一个单项式中,所有字母的指数的和叫做这个单项式的次数。例如:在单项式中,字母的指数是,是一次单项式;在单项式中字母和字母的指数的和是,是二次单项式。8. 多项式:个单项式的和叫做多项式。其中每个单项式叫做多项式的项,不含字母的项叫做常数项。例如:在多项式中,和是它的项,其中是常数项;在多项式中,它的项分别是,和,其中是常数项。多项式里次数最高项的次数叫做这个多项式的次数,例如:多项式中次数最高项是一次项,所以这个多项式的次数也是;多项式次数最高项是二次项,这个多项式的次数是。练习1.写出下列各数的绝对值 ,2.写出下列各数的相反数,并将这些数连同它们的相反数在数轴上表示出来 ,3.计算

26、 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)(15) (16) (17) (18) (19) (20) 4.计算(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22)(23) (24) (25) (26) (27) (28)(29) (30) (31) (32) (33) (34) (35)5.计算(1) (2) (3) (4)(5) (6) (7) (8)(9) (10)

27、 (11) (12)(13) (14)(15) (16)(17) (18)(19) (20)(21) (22)(23) (24)(25) (26)6.化简下列各式(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)(11) (12)(13) (14)(15) (16)(17) (18)(19) (20)(21) (22)(23)第二章:代数式及恒等变形知识要点1. 数的开方(1) 平方根:如果,那么叫做的平方根,记作,正数的正的平方根与的平方根叫做的算术平方根,记作。运算性质: (2) 立方根:如果,那么叫做的立方根,记作,任何实数都有一个与之同号的立方根。运算性质

28、: (3) 次方根:如果(是大于的整数),那么叫做的次方根,当为奇数时,的次方根记作。当为偶数时,的次方根记作,正数的正的次方根与的次方根叫做的次算术根,记作(,为大于的整数)。性质:正数有一个正的奇次方根;负数有一个负的奇次方根;零的奇次方根为零。正数的偶次方根有两个,它们互为相反数,零的偶次方根是零,负数没有偶次方根。运算性质:当,为偶数时, 当,为偶数时,2.二次根式(1)定义:形如的式子叫做二次根式,化简后被开方数相同的二次根式叫做同类二次根式。(2)性质: (3)运算:乘法运算: 除法运算: (4)分母有理化: (5)最简二次根式:满足被开方数的因数是整数,因式是整式。被开方数中不含

29、开得尽方的因数或因式的二次方根,叫做最简二次根式。在进行二次根式的运算时,常先将二次根式化成最简二次根式后再进行计算。3.幂的运算(1)正整数指数幂 (2)零指数幂 (3)负整数指数幂 (,为正整数) 整数指数幂的运算性质,(,是整数) 练习1. 计算下列各式的值(1) (2) (3) (4)(5) (6) (7) (8)(9) (10) (11) (12)(13) (14) (15) (16)(17) (18) (19) (20)(21) (22) (23) (24) (25) (26) (27) (28) (29) (30)(31) (32) (33) (34) (35) (36)2.计算

30、(1) (2) (3) (4) (5) (6)(7) (8)(9) (10)(11) (12)(13) (14)(15) (16)(17) (18)(19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30)3.求下列各数的平方根(1) (2) (3) (4) (5) (6) (7) (8) (9) 4. 求下列各数的算术平方根(1) (2) (3) (4) (5) (6) (7) (8) 5. 求下列各数的立方根(1) (2) (3) (4) (5) (6) (7) (8)6. 计算下列各式的值(1) (2) (3) (4) (5)

31、(6) (7) (8) (9) (10) (11) (12) (13) (14) (15)(16) (17)(18) (19)(20)(21)7.化简:(1); (2)8.化简:9.若,求的值10.正数满足,求的值11.若,求常数的值12.设,且e1,2c25ac2a20,求e的值13.已知:,求的值14. 计算 15.已知,求的值16.已知,问为何值时,为负数?17.已知,求的值 18.若有理数,满足,试确定的值19.已知,且,求的值20.(1)试证:(其中n是正整数)(2)计算:(3)证明:对任意大于1的正整数n, 有第三章: 因式分解知识要点1. 分解因式:把一个多项式化成个整式的积的形

32、式,叫做分解因式。2. 分解因式的方法: (1)提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。 (2)公式法:逆用乘法公式(如平方差公式、完全平方公式、立方差公式、立方和公式等)进行分解因式的方法。 (3)分组分解法:利用分组来分解因式的方法,此法的关键是选择适当、合理的分组方法。 (4)十字相乘法:对于二次三项式,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把,排列如下: 按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与

33、之积,即像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,叫做十字相乘法。(5) 求根公式法:设关于的一元二次方程的两个实数根为,则可以因式分解如下:(6) 因式分解其他方法还有换元法,待定系数法等3. 分解因式的一般步骤:首先观察多项式是否有公因式可提取,然后进行以下考虑:若待分解式是一个二项式,则可考虑用平方差、立方差(和)公式分解;若带分解式是一个三项式,则考虑可否用完全平方公式分解;若待分解式多于三项时,一般应该用完全立方或适当先分组然后分解因式。平方差公式:完全平方公式:三数和的平方公式:立方和公式:立方差公式:完全立方公式:练习1. 计算(1) (2)(3)

34、(4)(5) (6)(7) (8)(9) (10)(11) (12)(13)(14) (15)(16) (17)(18) (19)(20) (21)(22)(23)(24) (25)(26)2. 把下列各式分解因式(1) (2)(3) (4)(5) (6)(7) (8)(9) (10)(11) (12)(13) (14) (15)(16) (17)3. 分解因式(1) (2)(3) (4)(5) (6)(7) (8)(9) (10)(11) (12)(13) (14)(15) (16)(17) (18) (19) (20)4. 分解因式(1) (2)(3) (4)(5) (6)(7)5.在实数

35、范围内分解因式(1) (2)(3) (4) 6.三边,满足,试判定的形状7.分解因式:x2x(a2a)8.计算:9. 已知,求的值10.选择题:(1)若是一个完全平方式,则等于 ( )(A) (B) (C) (D)(2)不论,为何实数,的值 ( ) (A)总是正数 (B)总是负数 (C)可以是零 (D)可以是正数也可以是负数第四章: 解方程与方程组知识要点1. 含绝对值的方程 解含绝对值的方程的关键,就是根据绝对值的定义或性质,运用分类讨论转化为不含绝对值的方程,从而再求解,但转化必须是等价转化。当然,部分题目也可以运用绝对值的几何意义求解。 最简单的绝对值方程的解是: 的解为 或 的解为 无解2. 一元二次方程 (1)主要解法 直接开方法:形如的方程,可直接利用开平方法解。 配方法:因为,所以,就转化为,即,从而利用平方根的意义得到的解。 公式法:由上述配方法可得求根公式是: , 因式分解法:若,则的根为(2) 判别式 3. 方程组的解法 解方程组的基本思想是“消元”,基本方法是代入法和加减法,通过消元,减少未知数的个数,从而转化成一元一次方程或一元二次方程。“消元”的关键是选准先消去的未知数,一般原则:消去系数最简单的未知数。消去某个方程中缺少的未知数。消去系数成整数倍关系的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论