![八年级数学上册13.3《等腰三角形》同步测试题(含解析)(新版)新人教版_第1页](http://file3.renrendoc.com/fileroot_temp3/2021-12/13/bb607f2c-e4c1-4734-a059-f1bfc5842993/bb607f2c-e4c1-4734-a059-f1bfc58429931.gif)
![八年级数学上册13.3《等腰三角形》同步测试题(含解析)(新版)新人教版_第2页](http://file3.renrendoc.com/fileroot_temp3/2021-12/13/bb607f2c-e4c1-4734-a059-f1bfc5842993/bb607f2c-e4c1-4734-a059-f1bfc58429932.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、5.A. 18cmB. 21cmC. 18cm或21cmD.无法确定如图,是由绕点0顺时针旋转后得到的图形,若点 落在AB上,且的度数为,则的度数是A.B.C.6.如果一个等腰三角形的一个角为,则这个三角形的顶角为A.B.7.如图,中,AC的垂直平分线分别交 周长是A. 6B. 8C. 10D.无法确定8.已知a、b、c是的三条边,且满足,则是A.锐角三角形B.钝角三角形C.等腰三角形9.如图,下列条件不能推出是等腰三角形的是等腰三角形测试题时间:90分钟总分:100题号-一-二二三四总分得分一、选择题(本大题共10小题,共30.0分)1.如图,在?ABCDK,,的平分线交BA的延长线于点E,
2、则AE的长为A. 3B.B. 2D.数是3.已知等腰三角形一腰上的高线与另一腰的夹角为,那么这个等腰三角形的顶角等于A.或B.C.D.或4.已知等腰三角形的一边长5cm另一边长8cm则它的周长是2.如图,四边形ABCD1菱形,对角线AC BD相交于点0,于H,连接0H,则的度A.D.D恰好D.等边三角形22313.如图,在中,点P从点B开始以的速度向点C移动,当要以AB为腰的等腰三角形时,则运动的时间为 _.14.平行四边形ABCD,的角平分线BE将边AD分成长度为5cm和6cm的两部分,则平行四边形ABC啲周长为 _cmA.B.,C.,D.,10.如图,四边形ABC是边长为6的正方形,点E在
3、边AB上, 过点E作, 分别交BD CD于G, F两点若M N分别是DG CE的中点, 贝U MN的长为A. 3B.C.B. 4二、填空题(本大题共10小题,共30.0分)11.如图,在中,AD平分,交BC于点D,于E,则_.12.如图,OC平分,如果射线OA上的点E满足是等腰三角形,那么的度数为2415.如图,等腰三角形ABC勺底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则的周长的最小值为20._图,在中,D是AB的中点,过点D作于点E,则DE的长是_三、计算题(本大题共4小题,共24.0分)RDC521.如图
4、,中,D, E,F分别为AB BC CA上的点,且, 求证:也;若,求的度数.22.如图,在中,E在CA延长线上,BC的位置关系,并说明理由.AD是高,试判断EF与23.如图,在?ABCDK AE平分交DC于点E,,求EC的长.24.在中,F为AB延长线上一点,点E在BC上,且. 求证:也;若,求度数.26四、解答题(本大题共2小题,共16.0分)25.如图1,在中,于E,D是AE上的一点,且,连接BD CDa7试判断BD与AC的位置关系和数量关系,并说明理由;如图2,若将绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是 否发生变化,并说明理由;如图3,若将中的等腰直角三角形都换
5、成等边三角形,其他条件不变.试猜想BD与AC的数量关系,请直接写出结论;你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说 明理由.26.如图,中,于点E,于点D, BE与AD相交于F.求证:;若,求AF的长.7【答案】1.C2.A8.C9.C11. 312.或或13.或6s14. 32或3415. 816. 417. 1718. 2019. 3620.21.证明:,又,s解:也所以是等腰三角形又,中,已知22.解:,理由为:证明:, ,则EF与BC的位置关系23.解:在平行四边形又AE平分,即,即,又,答案和解析3.D4.C5.B6.D7.C10.C垂直ABCD,则,
6、88故EC的长为3cm24.证明:,在和中,S;?S?25.解:,理由是:延长BD交AC于F.在和中S不发生变化. 理由:,在和中S和是等边三角形,9在和中s,即BD与AC所成的角的度数为或26.解:,? ? ?在和中,s连接CF,s是等腰直角三角形.,BE是AC的垂直平分线.【解析】1.【分析】此题考查了平行四边形的性质以及等腰三角形的判定与性质能证得是等腰三角形是解 此题的关键由平行四边形ABCD中 ,CE平分,可证得是等腰三角形,继而利用,求得答 案.【解答】解:四边形ABCD1平行四边形,平分,故选C.2.【分析】此题考查了菱形的性质、 直角三角形的性质以及等腰三角形的判定与性质注意证
7、得是等 腰三角形是关键由四边形ABCD1菱形,可得,又由,可求得的度数,然后由直角 三角形斜边上的中线等于斜边的一半,证得是等腰三角形,继而求得的度数,然后求得1 010的度数.【解答】解:四边形ABCD是菱形,?故选A.3.解:当为锐角三角形时可以画图,高与右边腰成夹角,由三角形内角和为可得,顶角 为;当为钝角三角形时可画图,此时垂足落到三角形外面,因为三角形内角和为, 由图可以看出等腰三角形的顶角的补角为,三角形 的顶角为.故选D.首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能 出现题中所说情况所以舍去不计,我们可以通过画图来讨论剩余两种情况.本题考查了等腰三
8、角形的性质及三角形内角和定理,解答此题时考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.4.解:当腰是5cm时,三角形的三边是:5cm5cm8cm能构成三角形,则等腰三角形的周长;当腰是8cm时,三角形的三边是:5cm8cm8cm能构成三角形,则等腰三角形的周长.因此这个等腰三角形的周长为18或21cm故选:C.题目给出等腰三角形有两条边长为5cm和8cm而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定 要想到两种情况,分类进行讨论,还
9、应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.解:是绕点0顺时针旋转后得到的图形,由三角形的外角性质得, 故选B.根据旋转的性质可得,再求出,然后利用三角形的一个外角等于与它不相邻的两个 内角的和列式计算即可得解.本题考查了旋转的性质, 等腰三角形的性质,三角形的一个外角等于与它不相邻的两个 内角的和的性质,熟记各性质并准确识图是解题的关键.116.解:当角是顶角时,顶角; 当角是底角时,顶角;故选D.题中没有指明这个角是底角还是顶角,故应该分情况进行分析,从而求解. 本题主要考查等腰三角形的性质及三角形内角和定理的综合运用.7.解:是AC的垂直平分线,的周长故选C
10、.垂直平分线可确定两条边相等,然后再利用线段之间的转化进行求解.本题主要考查垂直平分线性质和等腰三角形的知识点,熟练掌握等腰三角形的性质.8.解:已知等式变形得:,即, ,即,则为等腰三角形.故选:C.已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到,即可确定出三角形形状.此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.9.解:由可得,则为等腰三角形,故A可以;由且,可得也,则可得,即为等腰三角形,故B可以;由,无法求得或,故C不可以;由,可得AD为线段BC的垂直平分线,可得,故D可以; 故选C.根据等腰三角形的判定逐项判断即可.本题主要考查等腰三角形的判定
11、,掌握等角对等边是解题的关键.10.解:解法一:如图1,过M作于K过N作于P,过M作于H,则,四边形MHPI是矩形,,N是EC的中点,同理得:, 四边形ABCD正方形, 是等腰直角三角形,在中,由勾股定理得:;解法二:如图2,连接FM EM CM四边形ABCD正方形,1 012是等腰直角三角形,是DG的中点,?S过M作于H ,由勾股定理得:,是等腰直角三角形,是EC的中点,故选C.方法三:连EM延长EM于H,使,连DH CH可证也HDM再证也,利用中位线可证. 故选:C.解法一:作辅助线,构建矩形MHP和直角三角形NMH利用平行线分线段成比例定理或中位线定理得:,利用勾股定理可得MN的长;解法
12、二:作辅助线,构建全等三角形,证明也,则,利用勾股定理得:,可得是等腰 直角三角形,分别求的长,利用勾股定理的逆定理可得是等腰直角三角形,根据直角三 角形斜边中线的性质得MN的长.本题考查了正方形的性质、三角形全等的性质和判定、等腰直角三角形的性质和判定、直角三角形斜边中线的性质、勾股定理的逆定理,属于基础题,本题的关键是证明是直 角三角形.11.解:延长CE交AB于F,平分,在与中,S? ? ?13故答案为:3.延长CE交AB于F,根据垂直的定义得到,根据角平分线的定义得到,推出旦,根据全 等三角形的性质得到, ,求得,由三角形的外角的性质得到,等量代换得到,得到, 根据等腰三角形的性质即可
13、得到结论.本题考查了全等三角形的判定和性质,角平分线的定义,等腰三角形的判定和性质,正 确的作出辅助线构造全等三角形是解题的关键.当E在时,当E在点时,则;当E在时,则;故答案为:或或.求出,根据等腰得出三种情况,根据等腰三角形性质和三角形内角和定理求出即 可.本题考查了角平分线定义,等腰三角形性质,三角形的内角和定理的应用,用了分类讨 论思想.13.解:当时,点P与点C重合,如图1所示,过点A作于点D,,即运动的时间6s;当时,运动的时间故答案为:或6s.由于等腰三角形的另一腰不确定,故应分与两种情况进行讨论.本题考查的是等腰三角形的判定,在解答此题时要进行分类讨论,不要漏解.14.解:四边
14、形ABCDI平行四边形,平分,当时,1414平行四边形ABCD勺周长是;当时,平行四边形ABCD勺周长是;故答案为:32或34.由平行四边形ABCDt出,由已知得到,推出,分两种情况当时,求出AB的长;当时,求出AB的长,进一步求出平行四边形的周长.本题主要考查了平行四边形的性质,等腰三角形的判定,三角形的角平分线等知识点, 解此题的关键是求出用的数学思想是分类讨论思想.15.解:连接AD交EF与点,连结AM,解得,是线段AB的垂直平分线,当点M位于点处时,有最小值,最小值6.的周长的最小值为.连接AD交EF与点,连结AM由线段垂直平分线的性质可知,则,故此当AMD在 一条直线上时,有最小值,
15、然后依据要三角形三线合一的性质可证明AD为底边上的高线,依据三角形的面积为12可求得AD的长.本题考查的是轴对称最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关 键.16.【分析】本题考查了等腰三角形的性质和勾股定理关键要熟知等腰三角形的三线合一可得先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.【解答】解:根据等腰三角形的三线合一可得:,在直角中,由勾股定理得:,所以,故答案为4.17.解:若3为腰长,7为底边长,由于,则三角形不存在;若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为.故答案为:17.求等腰三角形的周长,即是确定等腰三角形的腰与底的长求
16、周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角 形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.B DC是等腰三角形,点D是BC边的中点,1518.解:若,又在等腰三角形ADC中,是三角形ADC勺外角,又, 故答案为:20.根据题意可知的度数,然后再利用是三角形AD个外角即可求得答案.本题考查等腰三角形的性质,等腰三角形的两底角相等,以及三角形的内角和为的知识
17、点,此题难度不大.19.解:,的垂直平分线MN交AC于D点.平分,设为x,可得:,解得:,故答案为:36根据线段垂直平分线上的点到两端点的距离相等可得,根据等边对等角可得, 然后表示出,再根据等腰三角形两底角相等可得,然后根据三角形的内角和定理列出方程求解即可.此题考查了线段垂直平分线的性质以及等腰三角形的性质注意垂直平分线上任意一点, 到线段两端点的距离相等.20.解:过A作于F,连接CD中,在中,由勾股定理,得,故答案为:.过A作BC的垂线,由勾股定理易求得此垂线的长,即可求出的面积;连接CD由于,则、等底同高,它们的面积相等,由此可得到的面积;进而可根据的面积求出DE的长.此题主要考查了
18、等腰三角形的性质、勾股定理、三角形面积的求法等知识的综合应用能力.21.由已知已知,可证也;由可得,即是等腰三角形,又由,中,可求出,即,从而求出的度数.本题考查了等腰三角形的性质和判定、三角形的外角与内角的关系及全等三角形的判定及性质;证得三角形全等是正确解答本题的关键.22.EF与BC垂直,理由为:由三角形ABC为等腰三角形且AD为底边上的高,利用三 线合一得到AD为角平分线,再由,利用等边对等角得到一对角相等,利用外角性质得到一对内错角相等,利用内错角相等两直线平行得到EF与AD平行,进而确定出EF与BC垂直.此题考查了等腰三角形的性质,外角性质,以及平行线的判定与性质,熟练掌握等腰三 角形的性质是解本题的关键141623.本题主要考查了平行四边形的性质及角平分线的性质,应熟练掌握在平行四边形 中,由于AE平分,所以不难得出,进而由AD及AB的长代入数据求解即可.24.根据HL证明也;因为是等腰直角三角形,所以,得,由中的全等得:,从而得出结论 本题考查了等腰直角三角形的性质和直角三角形全等的性质和判定,知道等腰直角三角形的两个锐角是, 除了熟知三角形一般的全等判定方法外, 还要掌握直角三角形的全等 判定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三农产品品质管理方案
- 数据挖掘技术在业务智能化中的应用作业指导书
- 2025年青海货运从业资格证考试模拟试题及答案大全解析
- 2025年河北货运从业资格证考试题技巧
- 2025年保山a2货运从业资格证模拟考试
- 2025年辽宁货运从业资格证考试资料
- 2025年伊春c1货运上岗证模拟考试
- 2024年高中语文第四单元第13课宇宙的边疆课时优案1含解析新人教版必修3
- 粤教版道德与法治九年级上册2.1.2《政府社会治理的主要职责》听课评课记录
- 初中班主任教师工作计划
- 2025年度数据备份与恢复合法委托服务合同
- 《证券法培训》课件
- 2024年铁岭卫生职业学院高职单招语文历年参考题库含答案解析
- 大班美术活动:传统的节日
- 鞋类代理合作协议
- 防滑防摔倒安全教育
- 乳腺癌课件教学课件
- 连续性肾替代治疗抗菌药物剂量调整专家共识(2024年版)解读
- 山西省2024年中考物理试题(含答案)
- 2024年广西区公务员录用考试《行测》真题及答案解析
- 健康体检基础知识培训
评论
0/150
提交评论