版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、你身边的高考专家问题情境:问题情境:问题问题1 1:射箭比赛的箭靶涂有五个彩色得分环,从外:射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色金向内为白色、黑色、蓝色、红色,靶心为金色金色靶心叫色靶心叫“黄心黄心” 奥运会的比赛靶面直径为奥运会的比赛靶面直径为122cm,靶心直径为,靶心直径为12.2cm,运动员在运动员在70m外射假设射箭外射假设射箭都能中靶,且射中靶面内任意都能中靶,且射中靶面内任意一点都是等可能的,那么射中一点都是等可能的,那么射中黄心的概率有多大?黄心的概率有多大?122cm(1 1)试验中的基本事件是什么?)试验中的基本事件是什么?l能用古
2、典概型描述该事件的概率吗?为什么?能用古典概型描述该事件的概率吗?为什么?(2 2)每个基本事件的发生是等可能的吗?每个基本事件的发生是等可能的吗? 射中靶面上每一点都是一个基本事件射中靶面上每一点都是一个基本事件, ,这一点可这一点可以是靶面直径为以是靶面直径为122cm的大圆内的任意一点的大圆内的任意一点. .(3 3)符合古典概型的特点吗?符合古典概型的特点吗?问题问题2:2:取一根长度为取一根长度为3m的绳子,拉直后在任意位置剪的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于断,那么剪得两段的长都不小于1m的概率有多大?的概率有多大?3m(1 1)试验中的基本事件是什么?)试验中
3、的基本事件是什么?l能用古典概型描述该事件的概率吗?为什么?能用古典概型描述该事件的概率吗?为什么?(2 2)每个基本事件的发生是等可能的吗?)每个基本事件的发生是等可能的吗?(3 3)符合古典概型的特点吗?)符合古典概型的特点吗? 从每一个位置剪断都是一个基本事件从每一个位置剪断都是一个基本事件, ,剪断位剪断位置可以是长度为置可以是长度为3m的绳子上的任意一点的绳子上的任意一点. .问题问题3: 有一杯有一杯1升的水,其中漂浮有升的水,其中漂浮有1个个微生物,用一个小杯从这杯水中取出微生物,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个微生物的概率升,求小杯水中含有这个微生物的概率.
4、(1 1)试验中的基本事件是什么?)试验中的基本事件是什么?l能用古典概型描述该事件的概率吗?为什么?能用古典概型描述该事件的概率吗?为什么?(2 2)每个基本事件的发生是等可能的吗?每个基本事件的发生是等可能的吗?(3 3)符合古典概型的特点吗?)符合古典概型的特点吗? 微生物出现的每一个位置都是一个基本事件微生物出现的每一个位置都是一个基本事件, ,微生物微生物出现位置可以是出现位置可以是1 1升水中的任意一点升水中的任意一点. . (1)一次试验可能出现的结果有无限多个;一次试验可能出现的结果有无限多个; (2) 每个结果的发生都具有等可能性每个结果的发生都具有等可能性 l上面三个随机试
5、验有什么共同特点?上面三个随机试验有什么共同特点? 对于一个随机试验对于一个随机试验, ,我们将每个基本事件我们将每个基本事件理解为从某个特定的几何区域内随机地取一理解为从某个特定的几何区域内随机地取一点点, ,该区域中每一个点被取到的该区域中每一个点被取到的机会都一样机会都一样; ;而一个随机事件的发生则理解为恰好取到中而一个随机事件的发生则理解为恰好取到中述区域内的某个指定区域中的点述区域内的某个指定区域中的点. .这里的区域这里的区域可以是线段可以是线段, ,平面图形平面图形, ,立体图形等立体图形等. .用这种方用这种方法处理随机试验法处理随机试验, ,称为称为几何概型几何概型. .数
6、学理论:数学理论: 将古典概型中的有限性推广到无限性,而保留等将古典概型中的有限性推广到无限性,而保留等可能性,就得到可能性,就得到几何概型几何概型古典概型的本质特征:古典概型的本质特征:1、样本空间中样本点个数有限,、样本空间中样本点个数有限,2、每一个样本点都是等可能发生的、每一个样本点都是等可能发生的几何概型的本质特征:几何概型的本质特征:3 3、事件、事件A就是所投掷的点落在就是所投掷的点落在S中的可度量图形中的可度量图形A中中 1 1、有一个可度量的几何图形、有一个可度量的几何图形S;2 2、试验、试验E看成在看成在S中随机地投掷一点;中随机地投掷一点;l如何求几何概型的概率?如何求
7、几何概型的概率?122cmP(A)=01. 0122412 .124122 3m1m1mP(B)=31P(C)=1 . 011 . 0 注意:注意:D的测度不能为的测度不能为0, ,其中其中“测度测度”的意义的意义依依D确定确定. .当当D分别为线段分别为线段, ,平面图形平面图形, ,立体图形立体图形时时, ,相应的相应的“测度测度”分别为长度分别为长度, ,面积面积, ,体积等体积等. . 一般地一般地, ,在几何区域在几何区域D中随机地取一点中随机地取一点, ,记事记事件件“该点落在其内部一个区域该点落在其内部一个区域d内内”为事件为事件A, ,则事件则事件A发生的概率为发生的概率为:
8、:P(A)=的的测测度度的的测测度度Dd数学运用:数学运用: 例例1:某人午觉醒来某人午觉醒来,发现表停了发现表停了,他打他打开收音机开收音机,想听电台报时想听电台报时,求他等待的时求他等待的时间不多于间不多于10分钟的概率分钟的概率.解:设解:设A=等待的时间不多于等待的时间不多于10分钟分钟.我们所关心我们所关心的事件的事件A恰好是打开收音机的时刻位于恰好是打开收音机的时刻位于50,60时间时间段内段内,因此由几何概型的求概率的公式得因此由几何概型的求概率的公式得答:答:“等待的时间不超过等待的时间不超过1010分钟分钟”的概率为的概率为 1660 501( ),606P A 例例2:一海
9、豚在水池中自由游弋,水池长:一海豚在水池中自由游弋,水池长30m,宽,宽20m的长方形,求此刻海豚嘴尖离岸小于的长方形,求此刻海豚嘴尖离岸小于2m的概率的概率30m20m2 m 解:设事件解:设事件A“海豚嘴尖离岸边小于海豚嘴尖离岸边小于2m”(见阴影部分)(见阴影部分) P(A) dD的测度的测度302026 161840.313020600答答:海豚嘴尖离岸小于海豚嘴尖离岸小于2m的概率约为的概率约为0.31.例例3 3:取一个边长为:取一个边长为2a的正方形及其内切圆的正方形及其内切圆( (如图如图),),随随机地向正方形内丢一粒豆子机地向正方形内丢一粒豆子, ,求豆子落入圆内的概率求豆
10、子落入圆内的概率. .解解: :记记“豆子落入圆内豆子落入圆内”为事件为事件A, ,则则P(A)=4422 aa正正方方形形面面积积圆圆面面积积答答:豆子落入圆内的概率为豆子落入圆内的概率为4 撒豆试验撒豆试验:向正方形内撒:向正方形内撒n颗豆子,其中有颗豆子,其中有m颗落在颗落在圆内,当圆内,当n很大时,频率接近于概率很大时,频率接近于概率nAPm)(nm4.4mn练一练练一练练习练习2. .在在1L高产小麦种子中混入一粒带麦锈病的种子高产小麦种子中混入一粒带麦锈病的种子, ,从中随机取出从中随机取出10mL, ,含有麦锈病种子的概率是多少含有麦锈病种子的概率是多少? ?解解: :取出取出1
11、0mL种子种子, ,其中其中“含有病种子含有病种子”这一事件这一事件高为高为A, ,则则P( (A)=)=1001100010 所所有有种种子子的的体体积积取取出出种种子子的的体体积积答答: :含有麦锈病种子的概率为含有麦锈病种子的概率为0.01练习练习1. 1. 在数轴上,设点在数轴上,设点x-3,3x-3,3中按均匀分布出中按均匀分布出现,记现,记a(-1,2a(-1,2为事件为事件A A,则,则P P(A A)= =( )A A、1 B1 B、0 C0 C、1/2 D1/2 D、1/31/3C023-3-1 练习练习3:在正方形:在正方形ABCD内随机取一点内随机取一点P,求,求APB
12、90的概率的概率BCADP22)2(21)(aaDdAP 的的测测度度的的测测度度.8 APB 90?. 00)(2 aDdBP的测度的测度的测度的测度概率为概率为0 0的事件可能发生!的事件可能发生!回顾小结:回顾小结:1.1.几何概型的特点:几何概型的特点:、事件、事件A就是所投掷的点落在就是所投掷的点落在S中的可度量图形中的可度量图形A中中 、有一个可度量的几何图形、有一个可度量的几何图形S;、试验、试验E看成在看成在S中随机地投掷一点;中随机地投掷一点;2.2.古典概型与几何概型的区别古典概型与几何概型的区别. .相同:相同:两者基本事件的发生都是等可能的;两者基本事件的发生都是等可能的;不同:不同:古典概型要求基本事件有有限个,古典概型要求基本事件有有限个, 几何概型要求基本事件有无限多个几何概型要求基本事
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版建筑材料生产与销售合同
- 2024年度汽车检测合同协议范本
- 2024年度版权许可使用与再创作合同
- 2024年度软件开发合同(系统类)2篇
- 店铺租赁合同书简单版
- 2024年度知识产权许可使用合同属性明细
- 2024年度珠宝设计与制作分包合同协议书3篇
- 二零二四年度校园安防系统升级改造合同
- 碧桂园2024年度企业合作发展合同
- 二零二四年度工厂企业道路路缘石施工合同
- 5.5 跨学科实践:制作望远镜到西安 八年级物理上册人教版2024
- 《ST欧浦大股东掏空行为案例研究》
- 医院改扩建工程可行性研究报告(论证后)
- 【初中生物】第三章微生物检测试题 2024-2025学年人教版生物七年级上册
- 六年级数学上册 (基础版)第4章《比》单元培优拔高测评试题(学生版)(人教版)
- 2024水样采集与保存方法
- 2025届高考语文一轮复习:二元思辨类作文思辨关系高阶思维
- 糖尿病患者体重管理专家共识(2024年版)解读
- 《中国慢性阻塞性肺疾病基层诊疗与管理指南(2024年)》解读
- 4D厨房区域区间管理责任卡
- HSK标准教程5下-课件-L7
评论
0/150
提交评论