版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 六大基本初等函数图像与其性质1、 常值函数(也称常数函数) y =C(其中C 为常数);常数函数()yyOxOx平行于x轴的直线y轴本身定义域R定义域RxyO2、 幂函数 ,是自变量,是常数;1.幂函数的图像:2.幂函数的性质;性质函数定义域RRR0,+)x|x0值域R0,+)R0,+)y|y0奇偶性奇偶奇非奇非偶奇单调性增0,+) 增增增(0,+) 减(-,0 减(-,0) 减公共点(1,1)1)当为正整数时,函数的定义域为区间为,他们的图形都经过原点,并当>1时在原点处与x轴相切。且为奇数时,图形关于原点对称;为偶数时图形关于y轴对称;2)当为负整数时。函数的定义域为除去x=0的所
2、有实数;3)当为正有理数时,n为偶数时函数的定义域为(0, +),n为奇数时函数的定义域为(-,+),函数的图形均经过原点和(1 ,1);4)如果m>n图形于x轴相切,如果m<n,图形于y轴相切,且m为偶数时,还跟y轴对称;m,n均为奇数时,跟原点对称;5)当为负有理数时,n为偶数时,函数的定义域为大于零的一切实数;n为奇数时,定义域为去除x=0以外的一切实数。三、指数函数(是自变量,是常数且,),定义域是R ;无界函数1.指数函数的图象:x O(0,1)yO(0,1)xy 2.指数函数的性质;性质函数定义域R值域(0,+)奇偶性非奇非偶公共点过点(0,1),即时,单调性在是增函数
3、在是减函数1)当时函数为单调增,当时函数为单调减;2)不论为何值,总是正的,图形在轴上方;3)当时,所以它的图形通过(0,1)点。yO(0,1)x 3.(选,补充)指数函数值的大小比较;a.底数互为倒数的两个指数函数,的函数图像关于y轴对称。xO(0,1)yb.1.当时,a值越大,的图像越靠近y轴;O(0,1)yb.2.当时,a值越大, 的图像越远离y轴。4. 指数的运算法则(公式);13 / 13a.整数指数幂的运算性质;(1) (2) (3) (4) b.根式的性质;(1) ; (2)当n为奇数时,当n为偶数时,c.分数指数幂;(1)(2)4、 对数函数(是常数且),定义域无界1. 对数的
4、概念:如果a(a0,a1)的b次幂等于N,就是 ,那么数b叫做以a为底N的对数,记作,其中a叫做对数的底数,N叫做真数,式子叫做对数式。对数函数与指数函数互为反函数,所以的图象与的图象关于直线对称。2. 常用对数:的对数叫做常用对数,为了简便,N的常用对数记作。3.自然对数:使用以无理数为底的对数叫做自然对数,为了简便,N的自然对数简记作。4.对数函数的图象:Ox(1,0)y yOx(1,0) 5.对数函数的性质;性质 函数定义域(0,+)值域R奇偶性非奇非偶公共点过点(1,0),即时,单调性在(0,+)上是增函数在(0,+)上是减函数1)对数函数的图形为于y轴的右方,并过点(1,0);2)当
5、时,在区间(0,1),y的值为负,图形位于x的下方;在区间(1, +),y值为正,图形位于x轴上方,在定义域是单调增函数。在实际中很少用到。yOx(1,0)6.(选,补充)对数函数值的大小比较;a. 底数互为倒数的两个对数函数,yOx(1,0)的函数图像关于x轴对称。b.1. 当时,a值越大,yOx(1,0) 的图像越靠近x轴;b.2. 当时,a值越大,的图像越远离x轴。7.对数的运算法则(公式);a.如果a0,a1,M0,N0,那么:b.对数恒等式:c.换底公式:(1) (,一般常常换为或10为底的对数,即或)(2) 由公式和运算性质推倒的结论:d.对数运算性质(1)1的对数是零,即;同理或
6、(2) 底数的对数等于1,即;同理或5、 三角函数1. 正弦函数,有界函数,定义域,值域图象:五点作图法:0,2. 余弦函数,有界函数,定义域,值域图象:五点作图法:0,3.正、余弦函数的性质;性质函数定义域R值域-1,1-1,1奇偶性奇函数偶函数周期性对称中心对称轴单调性在上是增函数在上是减函数在上是增函数在上是减函数最值时,时,时,时,Oyx4. 正切函数,无界函数,定义域,值域的图像Oyx5. 余切函数,无界函数,定义域,的图像6. 正、余切函数的性质; 性质 函数定义域值域RR奇偶性奇函数奇函数周期性单调性在上都是增函数在上都是减函数对称中心零点Oyx-117. 正割函数,无界函数,定
7、义域,值域的图像Oyx-118. 余割函数,无界函数,定义域,值域的图像9. 正、余割函数的性质; 性质 函数定义域值域奇偶性偶函数奇函数周期性单调性减增减增续表: 性质 函数对称中心对称轴渐近线6、 反三角函数1. 反正弦函数,无界函数,定义域-1,1,值域A.反正弦函数的概念:正弦函数在区间上的反函数称为反正弦函数,记为2. 反余弦弦函数,无界函数,定义域-1,1,值域Oxy1-1Oxy1-1B.反余弦函数的概念:余弦函数在区间上的反函数称为反余弦函数,记为的图像 的图像3.反正、余弦函数的性质; 性质函数定义域-1,1-1,1值域奇偶性奇函数非奇非偶函数单调性增函数减函数4. 反正切函数
8、,有界函数,定义域,值域C.反正切函数的概念:正切函数在区间上的反函数称为反正切函数,记为5. 反余切函数,有界函数,定义域,值域xyOxyOD.反余切函数的概念:余切函数在区间上的反函数称为反余切函数,记为的图像 的图像6. 反正、余弦函数的性质;函数性质定义域R值域奇偶性奇函数非奇非偶单调性增函数减函数三角函数公式汇总一、任意角的三角函数在角的终边上任取一点,记:。正弦: 余弦:正切: 余切:正割:余割:二、同角三角函数的基本关系式倒数关系:,商数关系:,平方关系:,3、 诱导公式轴上的角,口诀:函数名不变,符号看象限;轴上的角,口诀:函数名改变,符号看象限。四、和角公式和差角公式五、二倍角公式二倍角的余弦公式常用变形:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度林业用地承包经营权租赁合同范本2篇
- 2025年化妆品原料质量追溯体系建设合同3篇
- 绿色金融在气候科技中的未来角色
- 2025年度环保产业园投资合作合同集锦3篇
- 2025年度女方离婚协议履行义务及违约赔偿合同-@-1
- 课题申报参考:马克思主义与儒释道思想融创的哲学范式研究
- 2025年度个人二手车交易合同模板全新升级版
- 《短视频编剧:选题构想+脚本制作+剧本策划+镜头拍摄》课件汇 第1-5章 选题方向:从账号定位出发 - 了解剧本:创作优剧本的基础
- 黑龙江省高三上学期开学考试语文试题(含答案)
- 二零二五版门卫室节能环保改造合同4篇
- 变压器搬迁施工方案
- 单位转账个人合同模板
- 八年级语文下册 成语故事 第十五课 讳疾忌医 第六课时 口语交际教案 新教版(汉语)
- 中考语文二轮复习:记叙文阅读物象的作用(含练习题及答案)
- 老年外科患者围手术期营养支持中国专家共识(2024版)
- 子宫畸形的超声诊断
- 2024年1月高考适应性测试“九省联考”数学 试题(学生版+解析版)
- (正式版)JBT 11270-2024 立体仓库组合式钢结构货架技术规范
- EPC项目采购阶段质量保证措施
- T-NAHIEM 101-2023 急诊科建设与设备配置标准
- 针灸与按摩综合疗法
评论
0/150
提交评论