大学经管类数学-线性代数期末考试测试卷_第1页
大学经管类数学-线性代数期末考试测试卷_第2页
大学经管类数学-线性代数期末考试测试卷_第3页
大学经管类数学-线性代数期末考试测试卷_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、大学经管类数学-线性代数期末考试测试卷说明:本卷中,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩,()表示向量与的内积,E表示单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1.设行列式=4,则行列式=( )A.12 B.24C.36 D.482.设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩阵X=( )A.A-1CB-1 B.CA-1B-1C.B-1A-1C D.CB-1A-13.已知A2+A-E=0,则矩阵A-1=( )A

2、.A-E B.-A-EC.A+E D.-A+E4.设是四维向量,则( )A.一定线性无关 B.一定线性相关C.一定可以由线性表示 D.一定可以由线性表出5.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( )A.A=0 B.A=EC.r(A)=n D.0<r(A)<(n)6.设A为n阶方阵,r(A)<n,下列关于齐次线性方程组Ax=0的叙述正确的是( )A.Ax=0只有零解 B.Ax=0的基础解系含r(A)个解向量C.Ax=0的基础解系含n-r(A)个解向量 D.Ax=0没有解7.设是非齐次线性方程组Ax=b的两个不同的解,则( )A.是Ax=b的解 B.是Ax=b的

3、解C.是Ax=b的解 D.是Ax=b的解8.设,为矩阵A=的三个特征值,则=( )A.20 B.24C.28 D.309.设P为正交矩阵,向量的内积为()=2,则()=( )A. B.1C. D.210.二次型f(x1,x2,x3)=的秩为( )A.1 B.2C.3 D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。 11.行列式=0,则k=_. 12.设A=,k为正整数,则Ak=_. 13.设2阶可逆矩阵A的逆矩阵A-1=,则矩阵A=_. 14.设向量=(6,-2,0,4),=(-3,1,5,7),向量满足,则=_. 15.设A是m&

4、#215;n矩阵,Ax=0,只有零解,则r(A)=_. 16.设是齐次线性方程组Ax=0的两个解,则A(3)=_. 17.实数向量空间V=(x1,x2,x3)|x1-x2+x3=0的维数是_. 18.设方阵A有一个特征值为0,则|A3|=_. 19.设向量(-1,1,-3),(2,-1,)正交,则=_. 20.设f(x1,x2,x3)=是正定二次型,则t满足_.三、计算题(本大题共6小题,每小题9分,共54分) 21.计算行列式 22.设矩阵A=,对参数讨论矩阵A的秩. 23.求解矩阵方程X= 24.求向量组:,的一个极大线性无关组,并将其余向量通过该极大线性无关组表示出来. 25.求齐次线性方程组的一个基础解系及其通解. 26.求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论