版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1找规律找规律2目录目录126基本技巧基本技巧妙题赏析妙题赏析基本方法基本方法3基本步骤基本步骤4关于数表关于数表5基本类型基本类型31基本方法基本方法-看增幅看增幅基本方法基本方法4基本方法基本方法例:4、10、16、22、28,求第n位数。分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1)66n25基本方法基本方法例:2、5、10、17,求第n位数。基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。那么,数列的第n-1位到
2、第n位的增幅是:3+2(n-2)=2n-1,总增幅为:3+(2n-1)(n-1)2(n+1)(n-1)n2-1所以,第n位数是:2+n2-1=n2+16基本方法基本方法例:2、3、5、9、17,求第n位数。分析:第二位数起,增幅增幅为1、2、4、8,所以数列的第n-1位到第n位的增幅是:2n-2,总增幅为:1+2+22+23+-+2n-2=2n-11所以,第n位数是:2+2n-11=2n-1+172基本技巧基本技巧基本技巧基本技巧8基本技巧基本技巧例:观察下列各式数:0,3,8,15,24,。试按此规律写出的第100个数是,第n个数是。解答这一题,可以先找一般规律,然后使用这个规律,计算出第1
3、00个数。我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,。序列号:1,2,3,4,5,。容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项n2-1,第100项是1002-1。9基本技巧基本技巧例:1,9,25,49,(81),(121),的第n项为(2n-1)2),例:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.答案与2的乘方有关即:2n给出的数:1,32,52,72,92,。序列号:1,2,3,4,5,。从中可以看出n=2时,正好是22-1的平方,n=3时,正好是
4、23-1的平方,以此类推。10基本技巧基本技巧例:2、5、10、17、26,第n项?析:同时减去2后得到新数列:0、3、8、15、24,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列第n项为:(n2-1)+2n2+111基本技巧基本技巧例:4,16,36,64,100,144,196,?(第一百个数)析:同除以4后可得新数列:1、4、9、16、25,序列号:1、2、3、4、5很显然是位置数的平方。得到新数列第n项即n2,原数列是同除以4得到的新数列,所以求出新数列n的公式后再乘以4即,4n2,则求出第一百个数为4*1002=40000。12基本技巧基本技巧例:
5、2,9,6,10,18,11,54,12,162,(),()例:1,5,2,8,4,11,8,14,(),()例:320,1,160,3,80,9,40,27,(),()2,9,6,10,18,11,54,12,162,(13),(486)1,5,2,8,4,11,8,14,(16),(17)320,1,160,3,80,9,40,27,(20),(81)133基本步骤基本步骤基本步骤基本步骤14基本步骤基本步骤15基本步骤基本步骤例:观察下面两行数2,4,8,16,32,64,(1)5,7,11,19,35,67(2)根据你发现的规律,取每行第十个数,求得他们的和。(要求写出最后的计算结果和
6、详细解题过程。)解:第一组可以看出是2n,第二组可以看出是第一组的每项都加3,即2n+3,则第一组第十个数是210=1024,第二组第十个数是210+3得1027,两项相加得2051。16基本步骤基本步骤例:白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?解:白】黑白】黑黑白】.,即个数分别为1,2,3.所以需要求出前2002个有多少白色的,然后就可以退出黑色的。设1+2+.+n2002即n(n+1)/22002解得n63当n=62时,1+2+.+62=1953所以一共有62个白色的珠子即黑色的珠子为2002-62=1940个174数表数表数表数表18数表数表步
7、骤:1、先算出第21列第一行的数字202+1=4012、再算出第21列第20行的数字:202+20=420例:请写出第20行,第21列的数字195数字推理基本类型数字推理基本类型基本类型基本类型20基本类型基本类型1、等差关系。例:12,20,30,42,()56例:127,112,97,82,()67例:3,4,7,12,(),282、移动求和或差。从第三项起,每一项都是前两项之和或差。例:1,2,3,5,(8),13解析:1+2=3,2+3=5,3+5=8,5+8=13例:5,3,2,1,1,(0)解析:选C。前两项相减得到第三项。21基本类型基本类型1、等比,从第二项起,每一项与它前一项
8、的比等于一个常数或一个等差数列。例:8,12,18,27,(40.5)后项与前项之比为1.5。例:6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,32、移动求积或商关系。从第三项起,每一项都是前两项之积或商。例:2,5,10,50,(500)例:100,50,2,25,(2/25)例:3,4,6,12,36,(216)从第三项起,第三项为前两项之积除以2例:1,7,8,57,(457)第三项为前两项之积加122基本类型基本类型例:1,4,9,16,25,(36),49为位置数的平方。例:66,83,102,123,(146)看数很大,其实是不难的,66
9、可以看作64+2,83可以看作81+2,102可以看作100+2,123可以看作121+2,以此类推,可以看出是8,9,10,11,12的平方加223基本类型基本类型例:1,8,27,(64),125位置数的立方。3,10,29,(66),127位置数的立方加224基本类型基本类型例:关键是把分子和分母看作两个不同的数列,有的还需进行简单的通分,则可得出答案例:-分子为等比即位置数的平方,分母为等差数列,则第n项代数式为:516,49,34,2172,31,52,21,32例:1nn225基本类型基本类型例:2,3,5,(7),11质数数列例:4,6,10,14,22,(26)每项除以2得到质
10、数数列例:20,22,25,30,37,(48)后项与前项相减得质数数列26双重数列双重数列例:1/7,14,1/21,42,1/36,72,1/52,(104)(1/69)两项为一组,每组的后项等于前项倒数2例:34,36,35,35,(36),34,37,(33)由两个数列相隔而成,一个递增,一个递减例:2.01,4.03,8.04,16.07,(32.11)整数部分为等比,小数部分为移动求和数列。27组合数列组合数列例:1,1,3,7,17,41,(99)移动求和与乘除关系组合例:65,35,17,3,(1)平方关系与和差关系组合例:4,6,10,18,34,(66)各差关系与等比关系组
11、合例:2,8,24,64,(160)幂数列与等差数列组合286妙题赏析妙题赏析妙题赏析妙题赏析29中考题中考题瑞士中学教师巴尔末成功地从光谱数据中得到巴尔末公式,从而打开了光谱奥妙的大门。请你按这种规律写出第七个数据是_。解析:这列数的分子分别为3,4,5的平方数,而分母比分子分别小4,则第7个数的分子为81,分母为77,故这列数的第7个为,3236,2125,1216,59778130中考题中考题观察下列各式:0,x1,x2,2x3,3x4,5x5,8x6,。试按此规律写出的第10个式子是_。解析:这一题,包含有两个变量,一个是各项的指数,一个是各项的系数。容易看出各项的指数等于它的序列号减1,而系数的变化规律就不那么容易发现啦。然而,如果我们把系数抽出来,尝试做一些简单的计算,就不难发现系数的变化规律。系数排列情况:0,1,1,2,3,5,8,。从左至右观察系数的排列,依次求相邻两项的和,你会发现,这个和正好是后一项。也就是说原数列相邻两项的系数和等于后面一项的系数。使用这个规律,不难推出原数列第8项的系数是5+8=13,第9项的系数是8+13=21,第10项的系数是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度专业版私人二手房购买协议3篇
- 2024-2030年中国大豆水解蛋白市场现状分析及前景趋势预测报告
- 2024-2030年中国城市地下管线探测行业需求趋势预测发展规划研究报告
- 2024-2030年中国垃圾发电项目可行性研究报告
- 2024-2030年中国地热采暖专用地板产业未来发展趋势及投资策略分析报告
- 2024-2030年中国土地储备产业发展状况规划研究报告
- 2024年度人工智能领域股权补偿协议3篇
- 2024年度校园物业管理及优化合同版B版
- 2024年物联网技术应用开发合作协议
- 马鞍山职业技术学院《数据库应用技术案例》2023-2024学年第一学期期末试卷
- 2023年自考传播学概论试题及答案
- GB/T 18277-2000公路收费制式
- 2023年住院医师规范化培训胸外科出科考试
- 11468工作岗位研究原理与应用第7章
- 2023实施《中华人民共和国野生动物保护法》全文学习PPT课件(带内容)
- 2022年初级育婴师考试题库附答案
- 系统家庭疗法课件
- 新版GSP《医疗器械经营质量管理规范》培训试题
- 初中道德与法治答题技巧课件
- 河北省保定市药品零售药店企业药房名单目录
- 广西基本医疗保险门诊特殊慢性病申报表
评论
0/150
提交评论