版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、多源测试信息融合多源测试信息融合证据理论基础(证据理论基础(2)万 江 文主要内容主要内容n几个概念n证据合成规则n基于证据理论的决策n基于证据理论的信息融合22022-3-28多源测试信息融合多源测试信息融合几个概念几个概念mass函数、信任函数、似然函数mass函数定义:设函数m是满足下列条件的映射: m: 20,1 (1) 不可能事件的基本置信度是0,即m()=0 (2) 2 中全部元素的基本置信度之和为1,即 则称m是2 上的mass函数(质量函数),m(A)称为A的基本置信度指派值,表示对A的精确信任。3Am(A) 12022-3-28多源测试信息融合多源测试信息融合B ABel(A
2、)m(B)概念回顾概念回顾信任函数定义:集合A是识别框架的任一子集,将A中全部子集对应的基本置信度之和称为信任函数Bel(A),即Bel:2 0,14注意:注意:mass函数与信任函数的区别!函数与信任函数的区别!2022-3-28多源测试信息融合多源测试信息融合概念回顾概念回顾似然函数:设识别框架 ,幂集2 0,1映射,A为识别框架内的任一子集,似然函数(似真度函数)Pl(A)定义为对A的非假信任度,即对A似乎可能成立的不确定性度 ,此时有:5Pl (A) 表示A为非假的信任程度,A的上限概率; Bel() 表示对A为假的信任程度,即对A的怀疑程度。A ( )( )1( )BAPl Am B
3、Bel A 证据区间划分示意图证据区间划分示意图2022-3-28多源测试信息融合多源测试信息融合主要内容主要内容n概念回顾n证据合成规则n基于证据理论的决策n基于证据理论的信息融合62022-3-28多源测试信息融合多源测试信息融合贝叶斯融合方法是将前一次检测得到的后验概率当作下一次检测的先验概率,一次一次叠代。 证据理论无需先验概率,又是如何关联检测结果?(1)两条证据的合成(2)多条证据的合成72022-3-28多源测试信息融合多源测试信息融合 假设m1,m2分别是同一识别框架上两条证据基本置信度指派,对应的焦元分别为A1, A2, , AN 和 B1, B2, , BM,由基本置信度指
4、派值m1(A1), m1(A2), ,m1(AN)和m2(B1), m2(B2), ,m2(BM)所确定的mass函数可用图2来表示。将证据联合作用下产生的信任度函数称为原来信任度函数的直和(正交和):m1 m2。8图图2 2 m1和和m2的基本置信度指派的基本置信度指派 (1)(1) massmass函数的几何表示函数的几何表示2022-3-28多源测试信息融合多源测试信息融合两证据直和运算可用图3来描述。大矩形看作总的信任度,每个竖条分别表示证据m1分配到它的焦元A1,A2,AN上的信度,横条表示证据m2分配到其焦元B1, B2, BM上的信任度,横条与竖条相交的小矩形面积表示同时分配到A
5、j和Bj上的信度。因此可以说,两条证据的联合作用就是将信度m1(Ai)、m2(Bj)精确的分配给 AiBj上。9图图3 3 m1与与m2的联合作用的联合作用2022-3-28多源测试信息融合多源测试信息融合显然可以看出,两个证据联合作用后,对于识别框架上某一子集C的总信任度可能包含多个小矩形,可以描述成:基于上述图解,当C=时,将有一部分信任度 分配到空集上,这与信任度函数的定义中要求m()=0是相违背。因此,Shafer提出将这部分信任度丢弃的解决方法,而丢弃之后总的信任度又小于1,所以乘以系数:1012()()ijijABCm A m B12( )()ijijABm A m B112(1(
6、)()ijijABm A m B2022-3-28多源测试信息融合多源测试信息融合例1: 对于同一识别框架=a,b,c,1,2两次检测的基本置信度指派值如图4所示,求 两 次 检 测 后 集 合C=a,b的基本置信度指派值?11图图4 4 示例示例当当C=a,b时,即时,即AB=C2022-3-28多源测试信息融合多源测试信息融合证据合成规则(定理1):设m1和m2分别是同一识别框架上的基本置信度指派函数,焦元分别A1, A2 , , AN和B1, B2 , , BM,假设 ,若映射m:20,1,满足m是基本置信度指派函数,其中 表示直和(正交和)运算。1212()()1jiABijKmA m
7、B12120()()( )()( )1jiABCijCmA mBm CmmCCK 2022-3-28多源测试信息融合多源测试信息融合证明: 由于已经假设了m()=0,所以下面只须证明13( )1Cm C12121121211212( )()( )()()1()()(1()()()()(1()()()()1ijijijijijijCCCijABCCijCABijijABCABCCijijABABm Cmm Cm A m Bm A m Bm A m Bm A m Bm A m Bm A m B 2022-3-28多源测试信息融合多源测试信息融合 证据合成规则中,系数(1/(l一k)称为归一化因子,
8、表明在合成时将非0的信任赋给空集。 其中, k的值越大,说明证据冲突程度也越大。142022-3-28多源测试信息融合多源测试信息融合12()()1jiABijKmA mB定理2:设m1,m2,mn是同一识别框架上的基本置信度指派,对应的焦元分别为A1,A2,An,则这n条证据的组合公式 n条证据的组合可按照两条证据的组合公式,经n-1次组合得到,获得最终证据与其次序无关 )()( )(1)()()()nnnAAAAnm AmmmAKm AmAmA其中,11122()()()nnnAAKm AmAmA2022-3-28多源测试信息融合多源测试信息融合例2:假设识别框架
9、下的三个证据E1,E2,E3,焦元分别为A、B和C(A,B,C不相交),相应的基本置信度指派值m1,m2,m3分别为求合成以后的mass值。16111( )0.8,( )0.1,( )0.1m Am Bm C222( )0.6,( )0.2,( )0.2m Am Bm C333( )0.6,( )0.1,( )0.3m Am Bm C2022-3-28多源测试信息融合多源测试信息融合解法1:根据证据合成公式,首先计算证据1和2合成后的结果。171,2122122122( ) ( )( )( ) ( )( )( ) ( )( )0.8 (0.20.2)0.1 (0.60.2)0.1 (0.60.
10、2)0.48Km Am Bm Cm BmAm Cm CmAm B121,21,2( )( )0.8 0.6( )0.923110.48m A mAmAK121,21,2( )( )0.1 0.2( )0.038511 0.48m B m BmBK121,21,2( )( )0.1 0.2( )0.038511 0.48m C m CmCK2022-3-28多源测试信息融合多源测试信息融合 基于证据1和2的组合结果m1,2,再次利用组合公式,与证据3进行合成。181,2,31,2331,2331,233( ) ( )( )( ) ( )( )( ) ( )( )0.923 (0.10.3)0.0
11、385 (0.60.3)0.0385 (0.60.1)0.432KmAm Bm CmBm Am CmCm Am B1,231,2,3( )( )0.923 0.6( )0.97211 0.432mA m Am AK1,231,2,3( )( )0.0385 0.1( )0.00711 0.432mB m Bm BK1,231,2,3( )( )0.0385 0.3( )0.02111 0.432mC m Cm CK2022-3-28多源测试信息融合多源测试信息融合 解法2:191 ,3 ,2123( )( )( )( )0.8 0.6 0.60.288mAm A mA mA1 ,3 ,2123
12、( )( )( )( )0.1 0.2 0.10.002mBm B m B m B1 ,3 ,2123( )( )( )( )0.1 0.2 0.30.006mCm C m C m C1 ,3 ,21,2,31 ,3 ,21 ,3 ,21 ,3 ,2( )( )0.972( )( )( )mAmAmAmBmC1 ,3 ,21,2,31 ,3 ,21 ,3 ,21 ,3 ,2( )( )0.007( )( )( )mBmBmAmBmC1 ,3 ,21,2,31 ,3 ,21 ,3 ,21 ,3 ,2( )( )0.021( )( )( )mCmCmAmBmC2022-3-28多源测试信息融合多源
13、测试信息融合 基本性质 Dempster证据组合规则满足如下的具备基本性质。 (1) 交换性: 201221mmmm证明: 由于D-S合成规则中采用的是乘法策略,而乘法满足交换率,所以合成规则也满足交换率。 交换性准则由Dempster最早提出,该准则保证了在组合证据没有任何先验知识的情况下,认为两个证据是平等的,调换组合的顺序不改变组合结果。2022-3-28多源测试信息融合多源测试信息融合(2) 结合率:21123123()()mmmmmm证明: 该定理可借助于共信任度函数来证明。 假定识别框架下的三组证据E1,E2,E3,相应的共信任度函数为Q1, Q2, Q3,焦元分别Ai, Bj,
14、Ch,则 且 , 的合成结果为ijDAB D 12QQ1,2121,212()()QQQK Q D Q D111,212( 1)()()DDDKQ D Q D其中2022-3-28多源测试信息融合多源测试信息融合22,hADCA , 的合成结果为123()QQQ123111,231,231,212311,21231231123123( )()( 1)( )( )( )( )( )( )( )( 1)( )( )( )( )( )( )( 1)( )( )( )AAAAAAAAAQ AQQQQA QAQA QAKQ A QA QAKQ A QA QAQ A QA QAQ A QA QAQQQ20
15、22-3-28多源测试信息融合多源测试信息融合23,ijhAABCA 同理同理: 12311123123123( )()( 1)( )( )( )( )( )( )AAAQ AQQQQ A QA Q AQ A QA Q AQQQ 所以,所以, 。由于基本置信度指派函数和共信任度函数存在对应。由于基本置信度指派函数和共信任度函数存在对应关系,可知关系,可知123123123()()QQQQQQQQQ123123123()()mmmmmmmmm2022-3-28多源测试信息融合多源测试信息融合(3) 极化性:若m()0,同一识别框架(包含m个元素)下n个相同证据合成后,单元素焦元总的信任分配值增加
16、,m个元素焦元即的信任分配值减小,且m越大越明显。证明: 假设下的两个证据E1=E2,相应的基本置信度指派函数为m1,m2(m1=m2),焦元分别为Ai,Bj,单元素焦元 ,合成后单元素焦元的增量为:24(1,2,., )hC hk2022-3-28多源测试信息融合多源测试信息融合251211212121122112112()()()()()()()()()()()()()()()()()()ijhijijhihjhijijhihjhijijABChhijABhhijABCACBChijABhijABCACBCijABm Am Bm Cm Cm Am Bm Cm Cm Am Bm Cm Am
17、Bm Cm A m Bm Am Am B或或2112)()()()()ijijijhABijABm B m Cm Am B2022-3-28多源测试信息融合多源测试信息融合2612mm1212()()()()ijhijhihjhihjhijhjABCABCACBCACBCm A m Bm C m B,1121212()()2() 1()()()()()ijhijihjhijhhjijABCABACBChijABm Cm CmBm A mBm Cm AmB ,121212()()()()0()()ijhijihjhihijhjijABCABA CBCA CijABm Cm Bm A m Bm A
18、m B,所有单焦元的信任分配的总值1()0khhm C2022-3-28多源测试信息融合多源测试信息融合焦元的信任分配增量为2712112111212111212( )( )( )( )()()( )( )()()()()( )( )2( )()()()ijijijijiijijABijABijABjABAijABmmmmm AmBmmm AmBm AmBmmmmBm AmB 111212111122112( )( )2( )()()()( )( )2( ) 1()()( )0()()ijiijijijjABAijABijABijABmmmmBm AmBmmmm AmBmm AmB 2022-
19、3-28多源测试信息融合多源测试信息融合例3:设有两个证据E1和E2,焦元分别为A,B,C,基本置信度指派函数为281212121212( )( )0.3,( )( )0.2,( )( )0.1,()()0.1,()()0.3m AmAm Bm Bm Cm Cm ABmABm BCm BC根据Demspter证据组合公式122212212221212( )( )( )()( )( )( )( )( )( )()()( )()( )0.42Km A mBm CmBCm B mAm Cm C mAmBmABm AB m Cm BC mA2022-3-28多源测试信息融合多源测试信息融合291221
20、212( )( )()()( )( )10.3 0.30.10.1 0.30.2591 0.42m A mAmABm AB mAmAK122212212( )( )()()()( )()( )10.2 0.20.1 0.30.1 0.20.30.2931 0.42m B m BmABm BCm AB m Bm BCmBK2022-3-28多源测试信息融合多源测试信息融合12212212( )( )()()( )()( )10.1 0.1 0.30.3 0.1 0.30.2761 0.42m C m Cm BCm BC m Cm BCmCK121212111( )( )( )( )( )( )m
21、AmBmCm Am Bm C(4)鲁棒性:在证据推理中,鲁棒性是指证据焦元的基本置信度指派发生小变化时,其组合结果不会发生质的变化。 证据的基本置信度指派函数发生变化前后,在不改变合成结果的主焦元信任值变化趋势时,证据焦元的基本信任分配变化的最大范围,即为鲁棒性范围。 当识别框架中仅含有两个单焦元元素时,可利用证据的冲突强度Ik来衡量,其计算公式为3012121212(,)(,)(,)(,)KK E EIE EK E EC E E其中, 表示证据间的一致程度; 表示证据间的冲突值。1212(,)()()ijijABC E Em A mB1212(,)()()ijijABK E Em A mB2
22、022-3-28多源测试信息融合多源测试信息融合31Ik取不同数取时,参与合成的两证据间具有如下的关系。0,000.5,1,1,1KKKKIKIKCIKCIK证据间的冲突量为 ,证据间没有冲突0两证据是一致的,冲突不影响合成结果0.5两证据间是冲突的,且影响合成结果=两证据间完全冲突,不能使用合成规则可见,D-S合成规则对 情况的处理是合理的,但对于 的情况,将无法使用或者使用之后得出与事实相悖的结果。基于上面的冲突强度定义,可得出D-S合成规则的鲁棒范围。0.5KI10.5KI2022-3-28多源测试信息融合多源测试信息融合主要内容主要内容n概念回顾n证据合成规则n基于证据理论的决策n基于
23、证据理论的信息融合2022-3-28多源测试信息融合多源测试信息融合32基于证据理论的决策基于证据理论的决策 用证据理论组合证据后,如何进行决策? 在实际工程应用中是跟具体应用密切相关的问题,需要具体问题具体分析。 理论上一般采用以下几种方法:决策方法1:基于信任函数的决策 (1)根据组合后得到的m,求出信任值函数BEL,则该信任函数就是我们的判决结果。(软判决)332022-3-28多源测试信息融合多源测试信息融合基于证据理论的决策基于证据理论的决策 (2)若希望缩小真值的范围,或找出真值,则可以采用最小点原则求出真值。(最小点原则) 集合A的信任函数为Bel(A),若在A中去掉某个元素bi
24、后的集合为B,且|Bel(B)-Bel(A)|,则认为元素bi可以去掉。直至再也不能按照此方法去掉元素为止。342022-3-28多源测试信息融合多源测试信息融合基于证据理论的决策基于证据理论的决策决策方法决策方法2:基于基本置信度指派值的决策 设 ,满足:, ,若有:则A1即为判决结果,其中1,2为预先设定的门限。3512A ,A 1iim(A) max m(A),A 2iii1m(A )max m(A ), AAA且 12121()()()()()m Am Amm Am 2022-3-28多源测试信息融合多源测试信息融合基于证据理论的决策基于证据理论的决策决策方法决策方法3: 基于最小风险
25、的决策基于最小风险的决策 设有设有识别框架识别框架 =x1, xq,决策集,决策集A=a1,ap,在状态,在状态为为xl时作出决策时作出决策ai的风险函数为的风险函数为 r(ai , xl),i=1,2,p,l=1,q,又设有一批证据又设有一批证据E在在上产生了一基本概率赋值,焦元为上产生了一基本概率赋值,焦元为A1,An,基本概率赋值函数为,基本概率赋值函数为m(A1),m(An),令:,令: 若若 使得使得 ,则,则ak即为所即为所求的最优决策。求的最优决策。361(,)(,), 1,.,; 1,.,kjijikxAjr aAr axipjnA 1()(,)()niijjjR ar aAm
26、A kaA 1arg min(),.,()ikpaaR aR a 2022-3-28多源测试信息融合多源测试信息融合基于证据理论的决策基于证据理论的决策决策方法决策方法4:类概率函数的方法 类概率函数的方法是一种定量方法,就是把类概率函数作为概率P(A)的点估计,进而采用最大后验概率或最小Bayes代价等经典判别准则得到决策。类概率函数定义:性质:2022-3-28多源测试信息融合多源测试信息融合37Ag(A)(A)(A)(A)belplbelA()0,( )1, 0(A)1(A)1(A)(A)(A) (A)(A)1(A) (A)ggggbelgplgg 主要内容主要内容n概念回顾n证据合成规
27、则n基于证据理论的决策n基于证据理论的信息融合382022-3-28多源测试信息融合多源测试信息融合 图图5 5 基于基于D-S证据理论的信息融合一般思路证据理论的信息融合一般思路传感器传感器1命题的证据区间命题的证据区间传感器传感器2命题的证据区间命题的证据区间传感器传感器n命题的证据区间命题的证据区间证据组合成规则证据组合成规则最终判决规则最终判决规则融融合合结结果果计算计算mj(A), Belj(A), Plj(A)证据合成证据合成决策决策基于证据理论的信息融合基于证据理论的信息融合 在一个或多个(如个或多个(如n)传感器的测试系统中有)传感器的测试系统中有m个目标,即个目标,即m个命题
28、个命题A1,A2,Am。每个传感器都基于观测证据产生。每个传感器都基于观测证据产生对目标的身份识别结果,即产生对命题对目标的身份识别结果,即产生对命题Ai的后验可信度分配的后验可信度分配值值Mj(Ai);之后在融合中心借助于;之后在融合中心借助于D-S合成规则,获得融合的合成规则,获得融合的后 验 可 信 度 分 配 值 ,后 验 可 信 度 分 配 值 , 确 定 检 测 对 象 的 最 终 状 态 。确 定 检 测 对 象 的 最 终 状 态 。392022-3-28多源测试信息融合多源测试信息融合1. . 单传感器多测量周期的信息融合单传感器多测量周期的信息融合 设传感器在各个测量周期中
29、,对命题设传感器在各个测量周期中,对命题A Ai i的后验可信度分配为的后验可信度分配为M1(Ai),M2(Ai),Mn(Ai),i=1,2,k 其中,其中,Mj( (Ai) )表示在第表示在第j个周期中个周期中( (j=1,2,n) )对命题对命题AiAi的可信的可信度分配值。度分配值。 根据根据证据合成公式证据合成公式,可得该传感器依据,可得该传感器依据n个测量周期的累计量测个测量周期的累计量测对对k个命题的融合后验可信度分配为个命题的融合后验可信度分配为-1isiAA 1 s njiM(A )cM (A ), i1,2,k 其中其中iisisiAA1 s n1 s nc1M (A )M
30、(A ) 基于证据理论的信息融合基于证据理论的信息融合402022-3-28多源测试信息融合多源测试信息融合2. . 多传感器多测量周期的信息融合多传感器多测量周期的信息融合 设设m个传感器,各传感器在各测量周期上获得的后验可信度分配个传感器,各传感器在各测量周期上获得的后验可信度分配为为Msj(Ai),i=1,2,k;j=1,2,n;s=1,2,m 式中,式中,Msj( (Ai) )表示第表示第s个传感器个传感器(s=1,2,m)在第在第j个测量周期个测量周期( (j=1,2,n) ) 上对命题上对命题Ai(i=1,2,k)的后验可信度分配。以下分两种情的后验可信度分配。以下分两种情况讨论多
31、传感器多测量周期命题可信度分配的融合。况讨论多传感器多测量周期命题可信度分配的融合。基于证据理论的信息融合基于证据理论的信息融合412022-3-28多源测试信息融合多源测试信息融合传感器传感器1M1j(Ai)不同周期融合不同周期融合M1(Ai)传感器传感器2M2j(Ai)不同周期融合不同周期融合M2(Ai)传感器传感器mMmj(Ai)不同周期融合不同周期融合Mm(Ai)j=1,2,n融融合合中中心心M(Ai)i=1,2,k图图6 6 分布式分布式计算计算 (1 1)分布式计算(先单传感器多周期融合,再中心融合)分布式计算(先单传感器多周期融合,再中心融合) 如图如图6所示,分布式计算的主要思想:首先对于每一个传感器,基于所示,分布式计算的主要思想:首先对于每一个传感器,基于n n个个周期的累积量测计算每一个命题的融合后验可信度分配,然后基于这些融合后周期的累积量测计算每一个命题的融合后验可信度分配,然后基于这些融合后验可信度分配,进一步计算总的融合后验可信度分配。验可信度分配,进一步计算总的融合后验可信度分配。基于证据理论的信
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度出租车承包运营人力资源配置合同3篇
- 2025年度智能电网建设与运营管理协议4篇
- 2025年度数字化车间承包经营合作协议4篇
- 方形母端快接式端子行业深度研究报告
- 2025年叉车电器项目可行性研究报告
- 2025年度个人股权分割与转让合同范本3篇
- 2025年度个人心理咨询服务合同范本4篇
- 2025年度个人房源信息在线交易安全保障协议4篇
- 2025年江苏国经控股集团有限公司招聘笔试参考题库含答案解析
- 2025年福建中闽海上风电有限公司招聘笔试参考题库含答案解析
- 河南省郑州市2023-2024学年高二上学期期末考试 数学 含答案
- 2024年资格考试-WSET二级认证考试近5年真题集锦(频考类试题)带答案
- 试卷中国电子学会青少年软件编程等级考试标准python三级练习
- 公益慈善机构数字化转型行业三年发展洞察报告
- 饲料厂现场管理类隐患排查治理清单
- 2024年公需科目培训考试题及答案
- 【名著阅读】《红岩》30题(附答案解析)
- Starter Unit 2 同步练习人教版2024七年级英语上册
- 分数的加法、减法、乘法和除法运算规律
- 2024年江苏鑫财国有资产运营有限公司招聘笔试冲刺题(带答案解析)
- 2024年辽宁石化职业技术学院单招职业适应性测试题库含答案
评论
0/150
提交评论