版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章:矢量分析 电磁场与电磁波农大理学院1第一章:矢量分析 电磁场与电磁波农大理学院2本章内容本章内容1.1 矢量代数矢量代数1.2 三种常用的正交曲线坐标系三种常用的正交曲线坐标系1.3 标量场的梯度标量场的梯度1.4 矢量场的通量与散度矢量场的通量与散度1.5 矢量场的环流与旋度矢量场的环流与旋度1.6 无旋场与无散场无旋场与无散场1.7 拉普拉斯运算与格林定理拉普拉斯运算与格林定理1.8 亥姆霍兹定理亥姆霍兹定理第一章:矢量分析 电磁场与电磁波农大理学院31. 1. 标量和矢量标量和矢量矢量的大小或模矢量的大小或模:AA矢量的单位矢量矢量的单位矢量:标量标量:一个只用大小描述的物理量。
2、一个只用大小描述的物理量。AAeA矢量矢量:一个既有大小又有方向特性的物理量,常用黑体字一个既有大小又有方向特性的物理量,常用黑体字 母或带箭头的字母表示。母或带箭头的字母表示。 矢量的几何表示矢量的几何表示:一个矢量可用一条有方向的线段来表示一个矢量可用一条有方向的线段来表示 注意注意:单位矢量不一定是常矢量。:单位矢量不一定是常矢量。 A矢量的几何表示矢量的几何表示常矢量常矢量:大小和方向均不变的矢量。大小和方向均不变的矢量。 1.1 矢量代数矢量代数矢量的代数表示矢量的代数表示:AeAeAAA第一章:矢量分析 电磁场与电磁波农大理学院4zzyyxxAeAeAeAcoscoscosAAAA
3、AAzyx)coscoscos(zyxeeeAAcoscoscoszyxAeeeezAxAAyAzxyO矢量用坐标分量表示矢量用坐标分量表示第一章:矢量分析 电磁场与电磁波农大理学院5(1)矢量的加减法)矢量的加减法)()()(zzzyyyxxxBAeBAeBAeBA 两矢量的加减在几何上是以这两矢量为两矢量的加减在几何上是以这两矢量为邻边的平行四边形的对角线邻边的平行四边形的对角线, ,如图所示。如图所示。矢量的加减符合交换律和结合律矢量的加减符合交换律和结合律2. 矢量的代数运算矢量的代数运算 矢量的加法矢量的加法BAAB矢量的减法矢量的减法BAABB 在直角坐标系中两矢量的加法和减法:在
4、直角坐标系中两矢量的加法和减法:结合律结合律()()ABCABCABBA交换律交换律第一章:矢量分析 电磁场与电磁波农大理学院6(2 2)标量乘矢量)标量乘矢量(3)矢量的标积(点积)矢量的标积(点积)zzyyxxkAekAekAeAkzzyyxxBABABAABBAcos A BB A矢量的标积符合交换律矢量的标积符合交换律1zzyyxxeeeeee0 xzzyyxeeeeeeAB矢量矢量 与与 的夹角的夹角ABA B A B 0BA/A BAB第一章:矢量分析 电磁场与电磁波农大理学院7(4)矢量的矢积(叉积)矢量的矢积(叉积)sinABeBAn)()()(xyyxzzxxzyyzzyxB
5、ABAeBABAeBABAeBAzyxzyxzyxBBBAAAeeeBAABBAsinABBABA矢量矢量 与与 的叉积的叉积AB用坐标分量表示为用坐标分量表示为写成行列式形式为写成行列式形式为BAABBA若若 ,则则BA/0BA若若 ,则则第一章:矢量分析 电磁场与电磁波农大理学院8(5 5)矢量的混合运算)矢量的混合运算CBCACBA)(CBCACBA)()()()(BACACBCBACBABCACBA)()()( 分配律分配律 分配律分配律 标量三重积标量三重积 矢量三重积矢量三重积第一章:矢量分析 电磁场与电磁波农大理学院9 三维空间任意一点的位置可通过三条相互正交曲线的交点来三维空间
6、任意一点的位置可通过三条相互正交曲线的交点来确定。确定。1.2 三种常用的正交曲线坐标系三种常用的正交曲线坐标系 在电磁场与波理论中,在电磁场与波理论中,三种常用的正交曲线坐标系为:三种常用的正交曲线坐标系为:直角直角坐坐标系、圆柱坐标系和球坐标系标系、圆柱坐标系和球坐标系。 三条正交曲线组成的确定三维空间任意点位置的体系,称为三条正交曲线组成的确定三维空间任意点位置的体系,称为正交曲线坐标系正交曲线坐标系;三条正交曲线称为;三条正交曲线称为坐标轴坐标轴;描述坐标轴的量称;描述坐标轴的量称为为坐标变量坐标变量。第一章:矢量分析 电磁场与电磁波农大理学院101. 直角坐标系直角坐标系zeyexe
7、rzyx位置矢量位置矢量面元矢量面元矢量线元矢量线元矢量zeyexelzyxddddzyelleSxzyxxdddddyxelleSzyxzzddddd体积元体积元zyxVddddzxelleSyzxyyddddd坐标变量坐标变量zyx,坐标单位矢量坐标单位矢量zyxeee, 点点P(x0,y0,z0)0yy(平面)(平面) o x y z0 xx(平面)(平面)0zz(平面(平面)P 直角坐标系直角坐标系 xezeyex yz直角坐标系的长度元、面积元、体积元直角坐标系的长度元、面积元、体积元 odzd ydxzyeSxxdddyxeSzzdddzxeSyyddd第一章:矢量分析 电磁场与电
8、磁波农大理学院112. 圆柱坐标系圆柱坐标系dddddddddddddddzzzzzelleSzelleSzelleSz,坐标变量坐标变量zeee,坐标单位矢量坐标单位矢量zeerz位置矢量位置矢量zeeelzdddd线元矢量线元矢量zVdddd体积元体积元面元矢量面元矢量圆柱坐标系中的线元、面元和体积元圆柱坐标系中的线元、面元和体积元圆柱坐标系圆柱坐标系0(半平面半平面)0(圆柱面圆柱面)0zz (平面平面)),(000zP第一章:矢量分析 电磁场与电磁波农大理学院12ddsinddd2relleSrrrddsindddrrelleSzrdddddrrelleSr3. 球坐标系球坐标系, r
9、坐标变量坐标变量eeer,坐标单位矢量坐标单位矢量rerr位置矢量位置矢量dsindddrererelr线元矢量线元矢量dddsind2rrV 体积元体积元面元矢量面元矢量球坐标系中的线元、面元和体积元球坐标系中的线元、面元和体积元球坐标系球坐标系0(半平面半平面)0(圆锥面圆锥面)0rr (球面球面)),(000rP第一章:矢量分析 电磁场与电磁波农大理学院134. 坐标单位矢量之间的关系坐标单位矢量之间的关系xeyezeeezecossin0cossin0001直角坐标直角坐标与与圆柱坐标系圆柱坐标系eezereeesin0cossincos0001圆柱坐标圆柱坐标与与球坐标系球坐标系直角
10、坐标直角坐标与与球坐标系球坐标系zereeecossincossinsincos0 xeyesinsinsincoscossinoxy单位圆单位圆 直角坐标系与柱坐标系之间直角坐标系与柱坐标系之间坐标单位矢量的关系坐标单位矢量的关系xeyeeeoz单位圆单位圆 柱坐标系与求坐标系之间柱坐标系与求坐标系之间坐标单位矢量的关系坐标单位矢量的关系zeeree第一章:矢量分析 电磁场与电磁波农大理学院141.3 标量场的梯度标量场的梯度q 如果物理量是标量,称该场为如果物理量是标量,称该场为标量场标量场。 例如例如:温度场、电位场、高度场等。:温度场、电位场、高度场等。q 如果物理量是矢量,称该场为如
11、果物理量是矢量,称该场为矢量场矢量场。 例如例如:流速场流速场、重力场重力场、电场、磁场等。、电场、磁场等。q 如果场与时间无关,称为如果场与时间无关,称为静态场静态场,反之为,反之为时变场时变场。时变标量场和矢量场可分别表示为时变标量场和矢量场可分别表示为: 、),(tzyxu),(tzyxF 确定空间区域上的每一点都有确定物理量与之对应,称在确定空间区域上的每一点都有确定物理量与之对应,称在该区域上定义了一个该区域上定义了一个场场。从数学上看,场是定义在空间区域上的函数:从数学上看,场是定义在空间区域上的函数:标量场和矢量场标量场和矢量场、),(zyxu),(zyxF静态标量场和矢量场可分
12、别表示为静态标量场和矢量场可分别表示为:第一章:矢量分析 电磁场与电磁波农大理学院151.1. 标量场的等值面标量场的等值面等值面等值面: : 标量场取得同一数值的点在空标量场取得同一数值的点在空 间形成的曲面。间形成的曲面。Czyxu),(等值面方程等值面方程:常数常数C 取一系列不同的值,就得到一系列取一系列不同的值,就得到一系列不同的等值面,形成等值面族;不同的等值面,形成等值面族;标量场的等值面充满场所在的整个空间;标量场的等值面充满场所在的整个空间;标量场的等值面互不相交。标量场的等值面互不相交。 等值面的特点等值面的特点:意义意义: : 形象直观地描述了物理量在空间形象直观地描述了
13、物理量在空间 的分布状态。的分布状态。标量场的等值线标量场的等值线( (面面) )第一章:矢量分析 电磁场与电磁波农大理学院162. 方向导数方向导数意义意义:方向导数表示场沿某方向的空间变化率:方向导数表示场沿某方向的空间变化率。00coscoscos|limMluuuuullxyz 概念概念: l0ul u(M)沿沿 方向增加;方向增加; l0ul u(M)沿沿 方向减小;方向减小; l0ul u(M)沿沿 方向无变化。方向无变化。 M0lMl方向导数的概念方向导数的概念 l特点特点:方向导数既与点:方向导数既与点M0有关,也与有关,也与 方向有关方向有关。问题问题:在什么方向上变化率最大
14、、其最大的变化率为多少?:在什么方向上变化率最大、其最大的变化率为多少? 的方向余弦。的方向余弦。 l式中式中: coscoscos、第一章:矢量分析 电磁场与电磁波农大理学院17梯度的表达式梯度的表达式:zueueueuz1圆柱坐标系圆柱坐标系 ureurerueursin11球坐标系球坐标系zueyuexueuzyx直角坐标系直角坐标系 3. 标量场的梯度标量场的梯度( 或或 )graduu意义意义:描述标量描述标量场在某点的最大变化率及其变化最大的方向场在某点的最大变化率及其变化最大的方向概念概念: ,其中其中 取得最大值的方向取得最大值的方向max|luuel luel第一章:矢量分析
15、 电磁场与电磁波农大理学院18标量场的梯度是标量场的梯度是矢量场矢量场,它在空间某,它在空间某点的方向表示该点场变化最大(增大)点的方向表示该点场变化最大(增大)的方向,其数值表示变化最大方向上的方向,其数值表示变化最大方向上场的空间变化率。场的空间变化率。标量场在某个方向上的方向导数,是标量场在某个方向上的方向导数,是梯度在该方向上的投影。梯度在该方向上的投影。梯度的性质梯度的性质:梯度运算的基本公式梯度运算的基本公式:uufufuvvuuvvuvuuCCuC)()()()()(0标量场的梯度垂直于通过该点的等值面(或切平面)标量场的梯度垂直于通过该点的等值面(或切平面)第一章:矢量分析 电
16、磁场与电磁波农大理学院19 解解 (1)由梯度计算公式,可求得由梯度计算公式,可求得P点的梯度为点的梯度为PzyxPzyxzeyexe)(22zyxzyxeeeeyexe22)22()1 , 1 , 1( 例例1.2.1 设一标量函数设一标量函数 ( x, y, z ) = x2y2z 描述了空间标量描述了空间标量场。试求:场。试求: (1) 该函数该函数 在点在点 P(1,1,1) 处的梯度,以及表示该梯度方向处的梯度,以及表示该梯度方向的单位矢量。的单位矢量。 (2) 求该函数求该函数 沿单位矢量沿单位矢量方向的方向导数,并以点方向的方向导数,并以点 P(1,1,1) 处的方向导数值与该点
17、的梯度处的方向导数值与该点的梯度值作以比较,得出相应结论。值作以比较,得出相应结论。ooo60cos45cos60coszyxleeee第一章:矢量分析 电磁场与电磁波农大理学院20表征其方向的单位矢量表征其方向的单位矢量 222(1,1,1)22221333(2 )(2 )( 1)xyzlxyzPPexeyeeeeexy (2) 由方向导数与梯度之间的关系式可知,沿由方向导数与梯度之间的关系式可知,沿el 方向的方向方向的方向导数为导数为对于给定的对于给定的P P 点,上述方向导数在该点取值为点,上述方向导数在该点取值为(1,1,1)1221222Pxyl)212221()22(zyxzyx
18、leeeeyexeel212 yx第一章:矢量分析 电磁场与电磁波农大理学院21而该点的梯度值为而该点的梯度值为 222(1,1,1)(2 )(2 )( 1)3Pxy 显然,梯度显然,梯度 描述了描述了P P点处标量函数点处标量函数 的最大变化率,的最大变化率,即最大的方向导数,故即最大的方向导数,故 恒成立。恒成立。PPPl 第一章:矢量分析 电磁场与电磁波农大理学院221.4 矢量场的通量与散度矢量场的通量与散度 1. 矢量线矢量线 意义意义:形象直观地描述了矢量场的空间分形象直观地描述了矢量场的空间分 布状态。布状态。),(d),(d),(dzyxFzzyxFyzyxFxzyx矢量线方程
19、矢量线方程:概念:概念:矢量线是这样的曲线,其上每一矢量线是这样的曲线,其上每一 点的切线方向代表了该点矢量场点的切线方向代表了该点矢量场 的方向。的方向。矢量线矢量线OM Fdrrrdr第一章:矢量分析 电磁场与电磁波农大理学院232. 矢量场的通量矢量场的通量 问题问题:如何定量描述矢量场的大小?如何定量描述矢量场的大小? 引入通量的概念。引入通量的概念。 ndddSSFSF eS通量的概念通量的概念nddSe S其中:其中:面积元矢量;面积元矢量;ne面积元的法向单位矢量;面积元的法向单位矢量;dSnddF eS穿过面积元穿过面积元 的通量。的通量。 如果曲面如果曲面 S 是闭合的,则规
20、定曲面的法向矢量由闭合曲面是闭合的,则规定曲面的法向矢量由闭合曲面内指向外,矢量场对闭合曲面的通量是内指向外,矢量场对闭合曲面的通量是),(zyxFSdne面积元矢量面积元矢量SSSeFSFddn第一章:矢量分析 电磁场与电磁波农大理学院240通过闭合曲面有通过闭合曲面有净的矢量线穿出净的矢量线穿出0有净的矢有净的矢量线进入量线进入0进入与穿出闭合曲进入与穿出闭合曲面的矢量线相等面的矢量线相等矢量场通过闭合曲面通量的三种可能结果矢量场通过闭合曲面通量的三种可能结果 闭合曲面的通量从闭合曲面的通量从宏观宏观上上建立了矢量场通过闭合曲面的通建立了矢量场通过闭合曲面的通量与曲面内产生矢量场的源的关系
21、。量与曲面内产生矢量场的源的关系。通量的物理意义通量的物理意义第一章:矢量分析 电磁场与电磁波农大理学院253. 矢量场的散度矢量场的散度 为了定量研究场与源之间的关系,需建立场空间任意点(小为了定量研究场与源之间的关系,需建立场空间任意点(小体积元)的通量源与矢量场(小体积元曲面的通量)的关系。利体积元)的通量源与矢量场(小体积元曲面的通量)的关系。利用极限方法得到这一关系:用极限方法得到这一关系:称为矢量场的称为矢量场的散度散度。 散度是矢量通过包含该点的任意闭合小曲面的通量与曲面元散度是矢量通过包含该点的任意闭合小曲面的通量与曲面元体积之比的极限。体积之比的极限。FVSzyxFzyxFS
22、Vd),(lim),(0第一章:矢量分析 电磁场与电磁波农大理学院26圆柱坐标系圆柱坐标系)(sin1)(sinsin1)(122FrFrFrrrFrzFFFFz)(球坐标系球坐标系zFyFxFFzyx直角坐标系直角坐标系散度的表达式散度的表达式:散度的有关公式散度的有关公式:GFGFfFFfFfkFkFkfCfCCCC)()(为常量)()()()为常矢量(0第一章:矢量分析 电磁场与电磁波农大理学院27直角坐标下散系度表达式的推导直角坐标下散系度表达式的推导: : 000000000,(,),22xxxx y zFxxF xy zF x y zx000000000,(,),22xxxx y
23、zFxxF xy zF x y zx000000(,)(,)22xxxFxxF xyzF xyzy zx y zx 由此可知,穿出前、后两侧面的净由此可知,穿出前、后两侧面的净通量值为通量值为 不失一般性,令包围不失一般性,令包围P点的微体积点的微体积 V 为一直平行六面体,如为一直平行六面体,如图所示。则图所示。则oxy在直角坐标系中计算在直角坐标系中计算zzxyPF第一章:矢量分析 电磁场与电磁波农大理学院28根据定义,则得到直角坐标系中的散度根据定义,则得到直角坐标系中的散度 表达式为表达式为 同理,分析穿出另两组侧面的净通量,并合成之,即得由点同理,分析穿出另两组侧面的净通量,并合成之
24、,即得由点P 穿出该六面体的净通量为穿出该六面体的净通量为zFyFxFVSFFzyxSVdlim0zyxzFzyxyFzyxxFSFzyxSd第一章:矢量分析 电磁场与电磁波农大理学院294. 散度定理散度定理VSVFSFdd体积的剖分体积的剖分VS1S2en2en1S 从散度的定义出发,可从散度的定义出发,可以得到矢量场在空间任意闭以得到矢量场在空间任意闭合曲面的通量等于该闭合曲合曲面的通量等于该闭合曲面所包含体积中矢量场的散面所包含体积中矢量场的散度的体积分,即度的体积分,即 散度定理是闭合曲面积分与体积分之间的一个变换关系,散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有
25、着广泛的应用。在电磁理论中有着广泛的应用。第一章:矢量分析 电磁场与电磁波农大理学院301.5 矢量场的环流与旋度矢量场的环流与旋度 1. 矢量场的环流与旋涡源矢量场的环流与旋涡源 例如:流速场例如:流速场。 不是所有的矢量场都由通量源激发。存在另一类不同于通不是所有的矢量场都由通量源激发。存在另一类不同于通量源的矢量源,它所激发的矢量场的力线是闭合的,它对于任量源的矢量源,它所激发的矢量场的力线是闭合的,它对于任何闭合曲面的通量为零。但在场所定义的空间中闭合路径的积何闭合曲面的通量为零。但在场所定义的空间中闭合路径的积分不为零。分不为零。第一章:矢量分析 电磁场与电磁波农大理学院31 如磁场
26、沿任意闭合曲线的积分与通过闭合曲线所围曲面的电如磁场沿任意闭合曲线的积分与通过闭合曲线所围曲面的电流成正比,即流成正比,即SCSzyxJIlzyxBd),(d),(00上式建立了磁场的环流与电流的关系。上式建立了磁场的环流与电流的关系。 磁感应线要磁感应线要么穿过曲面么穿过曲面磁感应线要么同时磁感应线要么同时穿入和穿出曲面穿入和穿出曲面磁感应线磁感应线第一章:矢量分析 电磁场与电磁波农大理学院32q 如果矢量场的任意闭合回路的环流恒为零,称该矢量场为如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无无旋场旋场,又称为,又称为保守场保守场。ClzyxFd),(环流的概念环流的概念 矢量场对于闭
27、合曲线矢量场对于闭合曲线C 的环流定义为该矢量对闭合曲线的环流定义为该矢量对闭合曲线C 的线积分,即的线积分,即q 如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场有旋矢量场,能够激发有旋矢量场的源称为,能够激发有旋矢量场的源称为旋涡源旋涡源。电流是。电流是磁场的旋涡源磁场的旋涡源。第一章:矢量分析 电磁场与电磁波农大理学院33 矢量场的环流给出了矢量场与积分回路所围曲面内旋涡源矢量场的环流给出了矢量场与积分回路所围曲面内旋涡源宏观联系。为了给出空间任意点矢量场与旋涡源的关系,引入宏观联系。为了给出空间任意点矢量场与旋涡源的关系
28、,引入矢量场的旋度。矢量场的旋度。 SCMFn2. 矢量场的旋度矢量场的旋度( ) F (1)环流面密度)环流面密度CSlFSFd1limrot0n称为称为矢量场在矢量场在点点M 处沿方向处沿方向 的的环流面密度环流面密度。n 过点过点M 作一微小曲面作一微小曲面 S ,它的边界曲线记为,它的边界曲线记为C,曲面的法,曲面的法线方向线方向 与曲线的绕向成右手螺旋法则。当与曲线的绕向成右手螺旋法则。当 S0 时,极限时,极限n特点特点:其值其值与与点点M 处的方向处的方向 有关。有关。n第一章:矢量分析 电磁场与电磁波农大理学院34而而 推导推导 的示意图如图所示的示意图如图所示。rotxFoy
29、z yCMzx1234计算计算 的示意图的示意图 rotxF 直角坐标系中直角坐标系中 、 、 的表达式的表达式rotxFrotyFrotzF41321dddddllllClFlFlFlFlF)()(4321zFyFzFyFzyzy2)(2yyFMFFMzzz2)(3zzFMFFMyyy2)(1zzFMFFMyyy2)(4yyFMFFMzzz第一章:矢量分析 电磁场与电磁波农大理学院35于是于是 同理可得同理可得故得故得概念概念:矢量场在矢量场在 M 点处的旋度为一矢量,其数值为点处的旋度为一矢量,其数值为M 点的环点的环流流 面密度最大值,其方向为取得环量密度最大值时面积元面密度最大值,其方
30、向为取得环量密度最大值时面积元 的法线方向,即的法线方向,即物理意义物理意义:旋涡源密度矢量。旋涡源密度矢量。性质性质:(2)矢量场的旋度)矢量场的旋度zyzFyFlFyzC)(dzFyFSlFFyzCSxdlimrot0maxnnrotFeFFeFnnrotxFzFFzxyrotyFxFFxyzrot第一章:矢量分析 电磁场与电磁波农大理学院36yFxFexFzFezFyFeFxyzzxyyzx旋度的计算公式旋度的计算公式: :zzFFFzeeeF1FrrFFrerererFrrsinsinsin12 直角坐标系直角坐标系 圆柱坐标系圆柱坐标系 球坐标系球坐标系zyxzyxFFFzyxeee
31、第一章:矢量分析 电磁场与电磁波农大理学院37旋度的有关公式旋度的有关公式:矢量场的旋度矢量场的旋度的散度恒为零的散度恒为零标量场的梯度标量场的梯度的旋度恒为零的旋度恒为零FfFfFf)(CfCf)(0CGFGF)(GFFGGF)(0)(F0)(u第一章:矢量分析 电磁场与电磁波农大理学院38SCSFlFdd3. 斯托克斯定理斯托克斯定理 斯托克斯斯托克斯定理是闭合曲线定理是闭合曲线积分与曲面积分之间的一个变积分与曲面积分之间的一个变换关系式,也在电磁理论中有换关系式,也在电磁理论中有广泛的应用。广泛的应用。曲面的曲面的剖分剖分方向相反大小方向相反大小相等结果抵消相等结果抵消 从旋度的定义出发
32、,可以得到矢量场沿任意闭合曲线的环从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即第一章:矢量分析 电磁场与电磁波农大理学院394. 散度和旋度的区别散度和旋度的区别 0,0FF0.0FF0,0FF0,0FF第一章:矢量分析 电磁场与电磁波农大理学院401. 矢量场的源矢量场的源散度源散度源:是标量,产生的矢量场在包围源的封闭面上的通量是标量,产生的矢量场在包围源的封闭面上的通量 等于(或正比于)该封闭面内所包围的源的总和,等于(或正比于)该封闭面内所包围的源的总和, 源在一给定点的(体)密度
33、等于(或正比于)矢量源在一给定点的(体)密度等于(或正比于)矢量 场在该点的散度;场在该点的散度; 旋度源旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面是矢量,产生的矢量场具有涡旋性质,穿过一曲面 的旋度源等于(或正比于)沿此曲面边界的闭合回的旋度源等于(或正比于)沿此曲面边界的闭合回 路的环量,在给定点上,这种源的(面)密度等于路的环量,在给定点上,这种源的(面)密度等于 (或正比于)矢量场在该点的旋度。(或正比于)矢量场在该点的旋度。1.6 无旋场与无散场无旋场与无散场第一章:矢量分析 电磁场与电磁波农大理学院412. 矢量场按源的分类矢量场按源的分类(1)无旋场)无旋场0dClF性
34、质性质: ,线积分与路径无关,是保守场。线积分与路径无关,是保守场。仅有散度源而无旋度源的矢量场,仅有散度源而无旋度源的矢量场,0F无旋场无旋场可以用标量场的梯度表示为可以用标量场的梯度表示为例如:静电场例如:静电场0EEuF()0Fu 第一章:矢量分析 电磁场与电磁波农大理学院42(2)无散场)无散场 仅有旋度源而无散度源的矢量场仅有旋度源而无散度源的矢量场,即,即性质性质:0dSSF0 F无散场可以表示为另一个矢量场的旋度无散场可以表示为另一个矢量场的旋度例如,恒定磁场例如,恒定磁场AB0BAF0)(AF第一章:矢量分析 电磁场与电磁波农大理学院43(3)无旋、无散场无旋、无散场(源在所讨
35、论的区域之外)(源在所讨论的区域之外)0F (4)有散、有旋场)有散、有旋场这样的场可分解为两部分:无旋场部分和无散场部分这样的场可分解为两部分:无旋场部分和无散场部分( )( )( )( )( )lCF rF rF ru rA r 无旋场部分无旋场部分无散场部分无散场部分()0u Fu 02 u0F 第一章:矢量分析 电磁场与电磁波农大理学院441.7 拉普拉斯运算与格林定理拉普拉斯运算与格林定理 1. 拉普拉斯运算拉普拉斯运算 标量拉普拉斯运算标量拉普拉斯运算2u概念概念:2 拉普拉斯算符拉普拉斯算符2222222uuuuxyz直角坐标系直角坐标系计算公式计算公式:22222211()uuuuz22222222111()(sin)sinsinuuuurrrrrr 圆柱坐标系圆柱坐标系球坐标系球坐标系uu2)(第一章:矢量分析 电磁场与电磁波农大理学院45 矢量拉普拉斯运算矢量拉普拉斯运算2F概念概念:2222xxyyzzFeFeFeF即即22()iiFF注意注意:对于非直角分量,对于非直角分量,22()iiFF直角坐标系中:直角坐标系中:如:如:2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 扬尘防治安全培训
- 2024年度高速公路技术咨询合同:全国范围2篇
- 关于反担保合同
- 钢筋供货商与工程开发商2024年度合同争议解决2篇
- 《汽车文化(第二版)》中职全套教学课件
- 《服务员培训方案》课件
- 技术服务合同(2篇)
- 酒水饮料购销合同饮料购买购销合同
- 空气波压力治疗系统
- 二零二四年北京市四合院买卖合同2篇
- 天然气门站操作规程培训课件.doc
- 销售货物或者提供应税劳务清单(模板)
- JJF 1915-2021 倾角仪校准规范_(高清正版)
- “散打”教案
- ERCP插管技巧ppt课件
- 钢结构平台计算书
- 设备投放合作协议
- 教师对学生学习情况评价表3页
- 《Lou's Flu》RAZ分级阅读绘本pdf资源
- 定语从句思维导图高中版
- MSDS硅铁安全技术说明书(共4页)
评论
0/150
提交评论