版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上北京工商大学系统建模与辨识课程上机实验报告(2016年秋季学期)专业名称 : 控制工程 上机题目 : 用极大似然法进行参数估计 专业班级 : 计研3班 学生姓名 : 王 瑶 吴 超 学 号 : 指导教师 : 刘翠玲 2017 年 1 月一 实验目的通过实验掌握极大似然法在系统参数辨识中的原理和应用。二 实验原理1 极大似然原理设有离散随机过程与未知参数有关,假定已知概率分布密度。如果我们得到n个独立的观测值,则可得分布密度,,。要求根据这些观测值来估计未知参数,估计的准则是观测值的出现概率为最大。为此,定义一个似然函数 (1.1) 上式的右边是n个概率密度函数的连乘,
2、似然函数L是的函数。如果L达到极大值,的出现概率为最大。因此,极大似然法的实质就是求出使L达到极大值的的估值。为了便于求,对式(1.1)等号两边取对数,则把连乘变成连加,即 (1.2)由于对数函数是单调递增函数,当L取极大值时,lnL也同时取极大值。求式(1.2)对的偏导数,令偏导数为0,可得 (1.3)解上式可得的极大似然估计。 2 系统参数的极大似然估计Newton-Raphson法实际上就是一种递推算法,可以用于在线辨识。不过它是一种依每L次观测数据递推一次的算法,现在我们讨论的是每观测一次数据就递推计算一次参数估计值得算法。本质上说,它只是一种近似的极大似然法。设系统的差分方程为 (2
3、.1)式中 因为是相关随机向量,故(2.1)可写成 (2.2)式中 (2.3) (2.4)是均值为0的高斯分布白噪声序列。多项式,和中的系数和序列的均方差都是未知参数。设待估参数 (2.5)并设的预测值为 (2.6)式中为预测误差;,为,的估值。预测误差可表示为 (2.7)或者 = (2.8)因此预测误差满足关系式 (2.9)式中假定预测误差服从均值为0的高斯分布,并设序列具有相同的方差。因为与,和有关,所以是被估参数的函数。为了书写方便,把式(2.9)写成 (2.10) (2.11)或写成 (2.12)令k=n+1,n+2,n+N,可得的N个方程式,把这N个方程式写成向量-矩阵形式 (2.1
4、3)式中 , , 因为已假定是均值为0的高斯噪声序列,高斯噪声序列的概率密度函数为 (2.14)式中y为观测值,和m为y的方差和均值,那么 (2.15)对于符合高斯噪声序列的极大似然函数为 (2.16)或 (2.17)对上式(2.17)等号两边取对数得 (2.18) 或写为 (2.19)求对的偏导数,令其等于0,可得 (2.20)则 (2.21)式中 (2.22)越小越好,因为当方差最小时,最小,即残差最小。因此希望的估值取最小 (2.23)因为式(2.10)可理解为预测模型,而e(k)可看做预测误差。因此使式(2.22)最小就是使误差的平方之和最小,即使对概率密度不作任何假设,这样的准则也是
5、有意义的。因此可按J最小来求的估计值。由于e(k)式参数的线性函数,因此J是这些参数的二次型函数。求使最大的,等价于在式(2.10)的约束条件下求使J为最小。由于J对是非线性的,因而求J的极小值问题并不好解,只能用迭代方法求解。求J极小值的常用迭代算法有拉格朗日乘子法和牛顿-拉卜森法。下面介绍牛顿-拉卜森法。整个迭代计算步骤如下:(1)确定初始的值。对于中的可按模型 (2.24)用最小二乘法来求,而对于中的可先假定一些值。(2)计算预测误差 (2.25)给出 并计算 (2.26)(3)计算J的梯度 和海赛矩阵 ,有 (2.27)式中 (2.28)即 (2.29)同理可得 (2.30) (2.3
6、1)将式(2.29)移项化简,有 (2.32)因为 (2.33)由求偏导,故 (2.34)将(2.34)代入(2.32),所以 (2.35)所以得 (2.36)同理可得(2.30)和(2.31)为 (2.37) (2.38)根据(2.36)构造公式 (2.39)将其代入(2.36),可得 (2.40)消除可得 (2.41)同理可得(2.37)和(2.38)式 (2.42) (2.43)式(2.29)、式(2.30)和式(2.31)均为差分方程,这些差分方程的初始条件为0,可通过求解这些差分方程,分别求出e(k)关于的全部偏导数,而这些偏导数分别为,和的线性函数。下面求关于的二阶偏导数,即 (2
7、.44) 当接近于真值时,e(k)接近于0。在这种情况下,式(2.44)等号右边第2项接近于0,可近似表示为 (2.45)则利用式(2.45)计算比较简单。(4)按牛顿-拉卜森计算的新估值,有 (2.46)重复(2)至(4)的计算步骤,经过r次迭代计算之后可得,近一步迭代计算可得 (2.47)如果 (2.48)则可停止计算,否则继续迭代计算。式(2.48)表明,当残差方差的计算误差小于时就停止计算。这一方法即使在噪声比较大的情况也能得到较好的估计值。三 实验内容设SISO系统差分方程为 其中极大似然估计法默认为: 辨识参数向量为 c1 c2式中,为噪声方差各异的白噪声或有色噪声;u(k)和y(
8、k)表示系统的输入输出变量。四 实验流程图五 代码实现程序如下:U=1.147 0.201 -0.787 -1.584 -1.052 0.866 1.152 1.573 0.626. 0.433 -0.958 0.810 -0.044 0.947 -1.474 -0.719 -0.086 1.099. 1.450 1.151 0.485 1.633 0.043 1.326 1.706 -0.340 0.890. 0.433 -1.177 -0.390 -0.982 1.435 -0.119 -0.769 -0.899 0.882. -1.008 -0.844 0.628 -0.679 1.54
9、1 1.375 -0.984 -0.582 1.609. 0.090 -0.813 -0.428 -0.848 -0.410 0.048 -1.099 -1.108 0.259. -1.627 -0.528 0.203 1.204 1.691 -1.235 -1.228 -1.267 0.309. 0.043 0.043 1.461 1.585 0.552 -0.601 -0.319 0.744 0.829. -1.626 -0.127 -1.578 -0.822 1.469 -0.379 -0.212 0.178 0.493. -0.056 -0.1294 1.228 -1.606 -0.3
10、82 -0.229 0.313 -0.161 -0.810. -0.277 0.983 -0.288 0.846 1.325 0.723 0.713 0.643 0.463. 0.786 1.161 0.850 -1.349 -0.596 1.512 0.795 -0.713 0.453. -1.604 0.889 -0.938 0.056 0.829 -0.981 -1.232 1.327 -0.681. 0.114 -1.135 1.284 -1.201 0.758 0.590 -1.007 0.390 0.836. -1.52 -1.053 -0.083 0.619 0.840 -1.2
11、58 -0.354 0.629 -0.242. 1.680 -1.236 -0.803 0.537 -1.100 1.417 -1.024 0.671 0.688. -0.123 -0.952 0.232 -0.793 -1.138 1.154 0.206 1.196 1.013. 1.518 -0.553 -0.987 0.167 -1.445 0.630 1.255 0.311 -1.726. 0.975 1.718 1.360 1.667 1.111 1.018 0.078 -1.665 -0.760. 1.184 -0.614 0.994 -0.089 0.947 1.706 -0.3
12、95 1.222 -1.351. 0.231 1.425 0.114 -0.689 -0.704 1.070 0.262 1.610 1.489. -1.602 0.020 -0.601 -0.020 -0.601 -0.235 1.245 1.226 -0.204. 0.926 -1.297 %输入数据Y=0.086 2.210 0.486 -1.812 -3.705 -2.688 1.577 2.883 3.705. 1.642 0.805 -2.088 0.946 -0.039 1.984 -2.545 -1.727 -0.231. 2.440 3.583 2.915 1.443 3.5
13、98 0.702 2.638 3.611 -0.168. 1.732 0.666 2.377 -0.554 -2.088 2.698 0.189 -1.633 -2.010. 1.716 -1.641 -1.885 1.061 -0.968 2.911 3.088 -1.629 -1.533. 3.030 0.614 -1.483 -1.029 -1.948 -1.066 -0.113 -2.144 -2.626. 0.134 -3.043 -1.341 0.338 2.702 3.813 -1.924 -2.813 -1.795. 3.002 1.027 1.027 2.755 3.584
14、1.737 -0.837 -0.617 1.703. 2.045 -2.886 -0.542 -2.991 -1.859 3.045 0.068 -0.375 0.451. 1.036 0.153 -0.474 2.512 -2.681 -0.954 -0.307 0.628 -0.270. -0.277 0.983 -0.288 0.846 1.325 0.723 1.750 1.401 1.340. 0.916 1.396 2.446 2.103 2.432 -1.486 3.031 2.373 -0.763. -0.752 -3.207 1.385 -1.642 -0.118 1.756
15、 -1.613 -1.690 2.136. -1.136 -0.005 -2.210 2.331 -2.204 0.983 1.347 -1.691 0.595. 1.809 -2.204 -2.330 -0.454 1.290 2.080 -1.990 -0.770 1.240. -0.252 3.137 -2.379 1.206 1.221 -1.977 2.471 -1.680 1.148. 1.816 0.055 -1.856 0.269 -1.323 -2.486 1.958 0.823 2.481. 2.209 3.167 -0.762 -2.225 -0.123 -2.786 1
16、.026 2.843 1.071. -3.317 1.514 3.807 3.388 3.683 -1.935 -1.935 0.309 -3.390. -2.124 2.192 -0.855 -1.656 0.016 1.804 3.774 -0.059 2.371. -2.322 -0.032 2.632 0.565 -1.460 -1.839 1.917 0.865 3.180. 3.261 -2.755 -0.536 -1.171 -0.905 -3.303 -0.834 2.490 3.039. 0.134 1.901%输出数据na=2;nb=1;nc=2;d=1;nn=max(na
17、,nc);L=size(Y,2);xiek=zeros(nc,1); %白噪声估计初值yfk=zeros(nn,1); %yf(k-i)ufk=zeros(nn,1); %uf(k-i)xiefk=zeros(nc,1); %vf(k-i)thetae_1=zeros(na+nb+1+nc,1); %参数估计初值P=eye(na+nb+1+nc);for k=3:L %构造向量 phi=-Y(k-1);-Y(k-2);U(k-1);U(k-2);xiek; %组建h(k) xie=Y(k)-phi'*thetae_1; phif=-yfk(1:na);ufk(d:d+nb);xiefk
18、; %递推极大似然参数估计算法 K=P*phif/(1+phif'*P*phif); thetae(:,k)=thetae_1+K*xie; P=(eye(na+nb+1+nc)-K*phif')*P; yf=Y(k)-thetae(na+nb+2:na+nb+1+nc,k)'*yfk(1:nc); %yf(k) uf=U(k)-thetae(na+nb+2:na+nb+1+nc,k)'*ufk(1:nc); %uf(k) xief=xie-thetae(na+nb+2:na+nb+1+nc,k)'*xiefk(1:nc); %vf(k) %更新数据 t
19、hetae_1=thetae(:,k); for i=nc:-1:2 xiek(i)=xiek(i-1); xiefk(i)=xiefk(i-1); end xiek(1)=xie; xiefk(1)=xief; for i=nn:-1:2 yfk(i)=yfk(i-1); ufk(i)=ufk(i-1); end yfk(1)=yf; ufk(1)=uf;endthetae_1figure(1)plot(1:L,thetae(1:na,:);xlabel('k'); ylabel('参数估计a');legend('a_1','a_2'); axis(0 L -2 2);figure(2)plot(1:L,thetae(na+1:na+nb+1,:);xlabel('k'); ylabel('参数估计b');legend('b_1','b_2'); axis(0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动合同续签沟通记录表
- 16年老工厂承包协议书
- 《信托法》 《合同法》
- 法院提级申请授权委托书
- 2025年巴彦淖尔货运从业资格证考试试题
- 2025年临夏从业资格证货运模拟考试下载
- 2025年扬州货运资格证模拟考试题库
- 2025年杭州货运从业模拟考试
- 《中外美术史》课程教学大纲
- 《时装表演组织与策划》课程教学大纲(中职)
- 2024年非高危行业生产经营单位主要负责人及安全管理人员安全生产知识和管理能力试题及答案
- 绿化工程完工质量验收报告
- 《妇产科学》课件-15.3绝经综合征
- 2024宾馆装修合同样本
- 2024年度智慧农业项目开发与实施合同
- 中国移动铁通公司招聘笔试题库2024
- 人教版八年级地理(上)全册复习教学设计(含教学反思)
- 中国痔病诊疗指南(2020版)
- (2024年)医疗法律法规培训
- 《建筑基坑工程监测技术标准》(50497-2019)
- 人教版数学小学二年级上册无纸笔测试题
评论
0/150
提交评论