24分解因式法_第1页
24分解因式法_第2页
24分解因式法_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课 题24 分解因式法课型新授课教学目标1能根据具体一元二次方程的特征,灵活选择方程的解法。体会解决问题方法的多样性。2会用分解因式(提公因式法、公式法)解某些简单的数字系数的一元二次方程。使学生知道分解因式法是解一元二次方程的一种简便、特殊的方法,通过“降次”把一元二次方程转化为两个一元一次方程;教学重点掌握分解因式法解一元二次方程。教学难点灵活运用分解因式法解一元二次方程。教学方法讲练结合法教学后记教 学 内 容 及 过 程学生活动一、回顾交流1、用配方法解一元二次方程的关键是将方程转化为(x+m)2=n(n0)的形式。 2、用公式法解一元二次方程应先将方程化为一般形式。3、选择合适的方法

2、解下列方程:x2-6x=7 3x2+8x-3=0用两种不同的方法解下列一元二次方程。1. 5x-2x-1=0 2. 10(x+1) -25(x+1)+10=0观察比较:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?分析小颖、小明、小亮的解法:小颖:用公式法解正确;小明:两边约去x,是非同解变形,结果丢掉一根,错误。小亮:利用“如果ab=0,那么a=0或b=0”来求解,正确。分解因式法:利用分解因式来解一元二次方程的方法叫分解因式法。如果ab=0,那么a=0或b=0如果ab=0,那么a=0或b=0,“或”是“二者中至少有一个成立”的意思,包括两种情况,二者同时成

3、立;二者有一个成立。“且”是“二者同时成立”的意思。二、范例学习例:解下列方程。1. 5x=4x 2. x-2=x(x-2)想一想你能用几种方法解方程x-4=0,(x+1)-25=0。三、随堂练习随堂练习 1、2拓展题四、课堂总结 利用因式分解法解一元二次方程,能否分解是关键,因此,要熟练掌握因式分解的知识,通过提高因式分解的能力,来提高用分解因式法解方程的能力,在使用因式分解法时,先考虑有无公因式,如果没有再考虑公式法。五、布置作业P62 习题2.7 1、2板书设计:一、 复习二、 例题三、 想一想四、 练习五、 小结 六、 作业学生练习。注:课本中,小颖、小明、小亮的解法由学生在探讨中比较,对照。概念:课本议一议,让学生自己理解。解:(1)原方程可变形为: 5x24x=0x(5x4)=0x=0或5x=4=0x1=0或x2=(2)原方程可变形为 x2x(x2)=0(x2)(1x)=0x2=0或1x=0x1=2,x2=1(1)在一元二次方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论