版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二次函数的三种表达形式:一般式:y=ax2+bx+c(aw0,a、b、c为常数),顶点坐标为2,而把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。顶点式:y=a(x-h)2+k(a0,ah、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值二k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式
2、中,h0时,h越大,图像白对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h0,k0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h0,k0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h0时,将抛物线y=ax2向左平行移动|川个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h0,k0.已知抛物线与x轴即y=0有交点A(xi,0)
3、和B(x2,0),我们可设y=a(x-xi)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数,.xi+x2=-b/a,xi?x2=c/a(由韦达定理得),.y=ax2+bx+c=a(x2+b/ax+c/a)=ax2-(xi+x2)x+xi?X2=a(x-xi)(x-x2).重要概念:a,b,c为常数,aw0,且a决定函数的开口方向。a0时,开口方向向上;a0,那么当2口时,y有最小值且y最小=44;h41白-七x=-如果a0,那么,当乙堂时,y有最大值,且y最大=4段0告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=
4、4时有最小值一3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解二次函数当x=4时有最小值一3,顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。.抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x4)23。将(1,0)代入得0=a(1-4)2-3,解得a=13.y=13(x-4)2-3,即y=13x283x+73。典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,
5、-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式.(2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式.(3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式.(4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3个单位,再向下平移2个单位,所得图像的解析式是y=x2-3x+5,则函数的解析式为点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94,即y=(x-32)2+11
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度智能安防系统设备维修与升级合同3篇
- 二零二五年度乡村旅游开发农村房屋买卖合同协议书2篇
- 2025年度企业公务车借用与车辆保险理赔协议范本3篇
- 二零二五年度农机维修配件进出口贸易合同模板3篇
- 二零二五年度农村宅基地房屋买卖及农村社会保障体系建设合同
- 2025年度农村农业劳务用工合同范本(含劳动争议调解)
- 二零二五年度新能源实验室储能技术研究合同3篇
- 二零二五年度汽车维修兼职技师雇佣合同3篇
- 2025年度XX能源公司二零二五年度绿色贷款合同3篇
- 2025年度商业综合体写字楼租赁管理服务协议3篇
- 护理查房深静脉置管
- 计算与人工智能概论知到智慧树章节测试课后答案2024年秋湖南大学
- 2024年度油漆涂料生产线租赁合同3篇
- 2024-2024年上海市高考英语试题及答案
- 庆祝澳门回归25周年主题班会 课件 (共22张)
- 《药事管理与法规》期末考试复习题及答案
- 血液病染色体
- 幼儿园膳食管理委员会组织结构概述
- 介入治疗的临床应用
- 第四章 牛顿运动定律 章末检测题(基础卷)(含答案)2024-2025学年高一上学期物理人教版(2019)必修第一册
- 华中师范大学《高等代数与解析几何》2023-2024学年第一学期期末试卷
评论
0/150
提交评论