复习用待定系数法求二次函数的解析式_第1页
复习用待定系数法求二次函数的解析式_第2页
复习用待定系数法求二次函数的解析式_第3页
复习用待定系数法求二次函数的解析式_第4页
复习用待定系数法求二次函数的解析式_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二次函数解析式有哪几种表达式?二次函数解析式有哪几种表达式? 一般式:一般式:y=ax2+bx+c 顶点式:顶点式:y=a(x-h)2+k交点式:交点式:y=a(x-x1)(x-x2)一般式: y=ax2+bx+c交点式:交点式:y=a(x-x1)(x-x2)顶点式:顶点式:y=a(x-h)2+k解:解: 设所求的二次函数为设所求的二次函数为y=ax2+bx+c由条件得:由条件得:a-b+c=10a+b+c=44a+2b+c=7解方程得:解方程得:因此:所求二次函数是:因此:所求二次函数是:a=2, b=-3, c=5y=2x2-3x+5例例1 已知一个二次函数的图象过点已知一个二次函数的图象

2、过点( (1,10)1,10)、(1,4)(1,4)、(2,7)(2,7)三点,求这个函数的解析式?三点,求这个函数的解析式? 1. 已知一个二次函数图象经过(已知一个二次函数图象经过(-1,10)、()、(2,7)和)和(1,4)三点,那么这个函数的解析式是)三点,那么这个函数的解析式是_.2. 已知一个二次函数的图象经过(已知一个二次函数的图象经过(1,8),(1,2),(2,5)三点)三点,求这个函数的解析式求这个函数的解析式.解:解:设所求的二次函数为设所求的二次函数为y=a(x1)2-3由条件得:由条件得:点点( 0,-5 )在抛物线上在抛物线上a-3=-5, 得得a=-2故所求的抛

3、物线解析式为故所求的抛物线解析式为 y=2(x1)2-3即:即:y=2x2-4x5一般式:一般式: y=ax2+bx+c交点式:交点式:y=a(x-x1)(x-x2)顶点式:顶点式:y=a(x-h)2+k例例2 已知抛物线的顶点为(已知抛物线的顶点为(1,3),与),与y轴交点轴交点为(为(0,5)求抛物线的解析式?)求抛物线的解析式?1. 已知抛物线已知抛物线y=ax2+bx+c的顶点是的顶点是A(-1,4)且经过点且经过点(1,2)求其解析式求其解析式.2. 已知抛物线的顶点为(已知抛物线的顶点为( 2,3),且过且过点(点(1,4),求这个函数的解析式求这个函数的解析式.解:解: 设所求

4、的二次函数为设所求的二次函数为y=a(x1)(x1)由条件得:由条件得:点点M( 0,1 )在抛物线上在抛物线上所以所以:a(0+1)(0-1)=1得:得: a=-1故所求的抛物线解析式为故所求的抛物线解析式为 y=- (x1)(x-1)即:即:y=x2+1一般式:一般式: y=ax2+bx+c交点式:交点式:y=a(x-x1)(x-x2)顶点式:顶点式:y=a(x-h)2+k例例3 已知抛物线与已知抛物线与X轴交于轴交于A(1,0),),B(1,0)并经过点并经过点M(0,1),求抛物线的解析式?),求抛物线的解析式? 1. 1. 已知抛物线已知抛物线y=-2xy=-2x2 2+8x-9+8

5、x-9的顶点为的顶点为A A点,若二点,若二次函数次函数y=axy=ax2 2+bx+c+bx+c的图像经过的图像经过A A点,且与点,且与x x轴交轴交于于B B(0 0,0 0)、)、C C(3 3,0 0)两点,试求这个二次)两点,试求这个二次函数的解析式。函数的解析式。有一个抛物线形的立交桥拱,这个桥拱的最大高度有一个抛物线形的立交桥拱,这个桥拱的最大高度为为16m16m,跨度为,跨度为40m40m现把它的图形放在坐标系里现把它的图形放在坐标系里( (如图所示如图所示) ),求抛物线的解析式,求抛物线的解析式 例例4设抛物线的解析式为设抛物线的解析式为y=ax2bxc,解:解:根据题意

6、可知根据题意可知抛物线经过抛物线经过(0,0),(20,16)和和(40,0)三点三点 可得方程组可得方程组 通过利用给定的条件通过利用给定的条件列出列出a、b、c的三元的三元一次方程组,求出一次方程组,求出a、b、c的值,从而确定的值,从而确定函数的解析式函数的解析式过程较繁杂,过程较繁杂, 评价评价有一个抛物线形的立交桥拱,这个桥拱的最大高度有一个抛物线形的立交桥拱,这个桥拱的最大高度为为16m16m,跨度为,跨度为40m40m现把它的图形放在坐标系里现把它的图形放在坐标系里( (如图所示如图所示) ),求抛物线的解析式,求抛物线的解析式 例例4设抛物线为设抛物线为y=a(x-20)216

7、 解:解:根据题意可知根据题意可知 点点(0,0)在抛物线上,在抛物线上, 通过利用条件中的顶通过利用条件中的顶点和过点和过原原点选用顶点点选用顶点式求解,式求解,方法比较灵活方法比较灵活 评价评价 所求抛物线解析式为所求抛物线解析式为 有一个抛物线形的立交桥拱,这个桥拱的最大高度有一个抛物线形的立交桥拱,这个桥拱的最大高度为为16m16m,跨度为,跨度为40m40m现把它的图形放在坐标系里现把它的图形放在坐标系里( (如图所示如图所示) ),求抛物线的解析式,求抛物线的解析式 例例4设抛物线为设抛物线为y=ax(x-40 )解:解:根据题意可知根据题意可知 点点(20,16)在抛物线上,在抛物线上, 选用两根式求解,选用两根式求解,方法灵活巧妙,过方法灵活巧妙,过程也较简捷程也较简捷 评价评价课堂小结课堂小结求二次函数解析式的一般方法:求二次函数解析式的一般方法:已知图象上三点或三对的对应值,已知图象上三点或三对的对应值, 通常选择一般式通常选择一般式已知图象的顶点坐标对称轴和最值)已知图象的顶点坐标对称轴和最值) 通常选择顶点式通常选择顶点式已

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论