中国有源相控阵技术发展状况和战略影响_第1页
中国有源相控阵技术发展状况和战略影响_第2页
中国有源相控阵技术发展状况和战略影响_第3页
中国有源相控阵技术发展状况和战略影响_第4页
中国有源相控阵技术发展状况和战略影响_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、The Technological Maturity of Chinese AESA Technology & Strategic Impacts中国有源相控阵技术发展状况及其战略影响Image 1: APG-63(V)2 radar installed on an F-15C. The APG-63(V)2 was the first fighter mounted AESA radar to enter service worldwide. The first American F-15C unit to receive the new radars were stationed

2、at Elmendorf in 2000. In comparison, the first European AESA entered operational service in 2012 and the first Russian AESA equipped fighters (Mig-35) will not enter service until 2016. The initial US technological lead in AESA technology is attributable to substantial investments made in the late s

3、tages of the Cold War. 图1:装备F-15C的APG-63(V)2型雷达。APG-63(V)2是世界围最先装备战斗机并投入使用的雷达。位于埃尔门多的美国F-15C单位夫于2000年最先接收该新型雷达。相比较而言,欧洲最早列装使用AESA雷达的时间是2012年,而俄罗斯的Mig-35战斗机于2016年前不会装备AESA雷达。美国在AESA技术上的领导地位,完全得益于冷战后期的巨额投资。Author's Note: During the research process on the J-31s avionics (for the upcoming Thre

4、at Analysis of Foreign Stealth Fighters:J-31 Part II), it became apparent that very few credible, verifiable, and non-speculative English based source materials existed on the subject of PLA fighter radars. Basic information, such the proper name or designation of a radar system is utilized by a par

5、ticular fighter often varies between sources; performance figures associated with domestically produced radars is even harder to verify. This article's intent was to compile a wide variety of information on expected future developments in Chinese actively scanned electronic array (AESA) radars.

6、Furthermore, the current “Threat Analysis of Foreign Stealth Fighters: Part I Chengdu J-20” is largely dated with respect to developments with the J-20s avionics suite and this article subsequently provides more up-to-date information on the J-20s AESA. 作者注:在J-31航空电子设备研制过程中(在国外隐身战机威胁分析第二部分:飞J-3

7、1中将进行说明),目前尚没有多少足够可信,或经证实,以及非投机性的解放军战斗机雷达资料。一些基础信息,例如装备特定战斗机的雷达系统的名称或型号与其生产厂商有关;中国国产雷达的性能参数很难被证实。本文的主要目的在于收集汇总有关中国有源相控阵雷达未来发展方向的广泛大量信息。此外,当前国外隐身战机威胁分析第一部分:成飞J-20中已经对J-20的航电系统的发展状态进行了大量描述,本文随后将提供有关J-20有源相控阵雷达发展的最新信息。AESA radars represent a significant increase in detection power, reliability, and ele

8、ctronic warfare capabilities when compared to older electronically scanned arrays (ESA) and mechanically scanned arrays (MSA). This article largely focus on more technical aspects of AESAs but the basics of AESAs are cogently detailed by Karlo Kopp in "Active Electronically Steered Arrays A Mat

9、uring Technology".对比较早的电子扫描阵列(无源相控阵)雷达和机械扫描雷达,有源相控阵雷达具有在探测性能、可靠性和电子战方面均有大幅提升。本文主要关注AESA技术,但该技术的更详细描述可参考Karlo Kopp的有源相控阵列一个成熟的技术一文。Three main determinants dictate the maximum number of transmit receiver modules a fighter radar can accommodate: the volume of the aircrafts nose, the technological

10、maturity of the firm/countrys T/R module packaging technology, and the effectiveness of the radar's thermal management system(s). The volume of the nose is a fairly intuitive constraint, the larger an aircrafts nose is, the larger the radar can be. For example, the F-15Cs nose cone is able to ac

11、commodate the much larger 1,500 T/R element APG-63V(3) radar vs. the F-16C Block 60 with its comparatively smaller nose cone and its 1,000 T/R element APG-80 AESA. Packaging technology refers to how many individual T/R modules can be installed within the finite space usually accomplished by reductio

12、ns in size of the individual T/R modules. The more technologically advanced a firms T/R packaging technology is, the smaller the individual T/R modules will be resulting in an increase density of the layout of T/R modules within the array. Thus, advancements in packaging technology enable engineers

13、to accommodate more T/R modules within the fixed volume of the aircraft's nose.三个主要因素决定了战斗机雷达可容纳的T/R组件数量:飞机机头的容积容量、T/R组件封装技术的成熟度,以及雷达的热管理系统的工作效率。机头部位的容积是一个相当直观的约束条件,飞机鼻锥部位容积越大,雷达(天线阵面)越大。例如:F-15C的机头鼻锥可容纳具有1500个T/R组件的APG-63V(3)雷达,而F-16C Block 60只能容纳具有1000个T/R组件的APG-80雷达。通过减小单个T/R组件的体积,封装技术决定了再固定的

14、空间可容纳的最大T/R组件数量。更加先进的封装技术可制造体积更小的T/R组件,从而提高了阵面上的T/R组件布局密度。因此,在封装技术上的进步,将允许工程师们在固定的飞机鼻锥空间里布置更多的T/R组件。Image 2: US early production quad packed transmit receiver modules. The United States no longer produces quad channel T/R modules and has since produced single T/R module designs. Less advanced AESAs

15、such as the Zhuk-AE utilize multi-T/R channel designs, it is possible China's first generation of AESAs also utilize a multi-T/R channel design.图2:早期美国制造的4联装T/R组件。美国不再制造4联装T/R组件,转而制造独立封装的T/R组件。少数先进AESA系统,例如:Zhuk-AE雷达,使用多联装T/R组件封装技术,中国第一代AESA系统可能也使用了多联装T/R组件设计。Lastly, thermal management systems a

16、re instrumental for the operation of high power AESA radars. Unlike MSA systems, air cooling systems are insufficient to prevent heat related system failures and frequent maintenance issues:最后,热管理系统在高功耗AESA雷达中起到关键作用。与机械扫描(MSA)系统不同,风冷散热系统不足以防止散热相关的系统故障以及由其引起的频繁维修费用:“Due to the behavior of microwave t

17、ransistor amplifiers, the power efficiency of a TR module transmitter is typically less than 45%. As a result, an AESA will dissipate a lot of heat which must be extracted to prevent the transmitter chips becoming molten pools of Gallium Arsenide - reliability of GaAs MMIC chips improves the cooler

18、they are run. Traditional air cooling used in most established avionic hardware is ill suited to the high packaging density of an AESA, as a result of which modern AESAs are liquid cooled.US designs employ a polyalphaolefin (PAO) coolant similar to a synthetic hydraulic fluid. A typical liquid cooli

19、ng system will use pumps to drive the coolant through channels in the antenna, and then route it to a heat exchanger. That might be an air cooled core (radiator style) or an immersed heat exchanger in a fuel tank - with a second liquid cooling loop to dump heat from the fuel tank. In comparison with

20、 a conventional air cooled fighter radar, the AESA will be more reliable but will require more electrical power and more cooling, and typically can produce much higher transmit power if needed for greater target detection range performance (increasing transmitted power has the drawback of increasing

21、 the footprint over which a hostile ESM or RWR can detect the radar” Kopp, 2014“由于微波发射放大器的特性,T/R组件中发射部分的用电效率典型值小于45%。因此,AESA系统工作期间所产生的大量热量需要耗散,以避免发射部分芯片变为砷化镓“熔炉”高可靠性的砷化镓微波单片集成电路需配备更佳的散热器。在众多已装备的航电机载设备中所使用的传统风冷技术,并不适用于高密度封装的AESA系统,因此,现代AESA系统采用液冷技术。美国设计研发的聚-烯烃(PAO)冷却液是一种合成液压液。典型的液冷系统往往采用一个液压泵驱动冷却液在天线

22、的散热管道中流动,并最终通过冷却液将热量传递给热交换机。这种热交换机可以是类似汽车引擎散热器的风冷器,也可以是安放在油箱中的浸入式热交换器。相比较传统风冷战斗机雷达而言,AESA系统将更加可靠,但同时需要更高的功耗和更苛刻的散热需求,通过发射更高功率电磁波信号,就可以获得更远的目标探测距离性能(但更高的发射功率同样意味着雷达系统可能更早被敌方ESM或RWR设备侦测而暴露)。”-Kopp,2014。Image 3:The image which allegedly describes the number of TR modules within the J-10B, J-16, and J-2

23、0 has been posted on numerous defense forums since at least December of 2013.图3:该图展示了截止2013年12月前在众多军事防御论坛广泛登载的J-10B、J-16和J-20上AESA系统的T/R组件数量。Chinese defense forums have posted copies of the image above which claim to cite the J-20s AESA T/R module count at 1,856, the J-16s at 1,760, and the J-10B at

24、 1,200 T/R modules. It is likely the J-10B is the first Chinese fighter aircraft to feature an AESA; J-10B units achieved initial operational capability (IOC) in October of 2014. The volume of the J-10s nose cone is not substantially different from that of the F-16 or the Israeli Lavi from which the

25、 J-10 is partially based. Therefore, if one were to assume China had reached parity with the United States in packaging technology, the 1,200 T/R module figure would be plausible but slightly high. For comparison, the APG-80 AESA for the F-16C/D Block 60 has 1,000 T/R modules (DSB, 2001). However, i

26、t is unlikely that China has been able to reach parity with the United States in terms of packaging technology on their first generation AESA design. Neither Russia nor Israel was able to field 1,000 T/R element arrays within their first generation fighter mounted AESAs for similar nose volumes as t

27、he F-16 with the Mig-35 and Israeli F-16 respectively.中国军事防御论坛上登载了图片的副本,图片声称J-20的AESA系统T/R组件数量为1856个,J-16为1760个,J-10B为1200个。J-10B飞机可能是首款使用AESA系统的中国国产战斗机;J-10B单位在2014年10月形成初步作战能力(IOC)。J-10飞机的鼻锥部位空间与F-16类同,或被J-10部分借鉴设计的以色列“狮”战机。因此,如果有人假设中国已经在封装技术方面已经或部分达到美国的水平,那么1200个T/R组件的数字可信度值得商榷,或至少略微被夸大了。作为比较,配装F

28、-16C/D Block 60的APG-80 AESA雷达系统拥有1000个T/R组件(美国国防科技局,2001)。然而,中国在第一代AESA系统设计时的封装技术似乎不可能达到美国同期水平。无论是俄罗斯还是以色列,以与F-16机头鼻锥容积相类似的Mig-35和以色列F-16,在其第一代AESA雷达系统中均未能放置1000个T/R组件。Russias first fighter mounted AESA radar, the Zhuk-AE, contained 652 T/R modules and was unveiled in 2007. The Israeli ELM-2052 AESA

29、 radar, which has been marketed for both the F-16 and the FA-50 a joint Korean Aerospace Industry and Lockheed Martin F-16 derivative, has roughly 512 T/R modules (Trimble, 2014). The only firm outside of the United States that was able to produce a 1,000 T/R element within one generation was the Fr

30、ench avionics firm Thales with its RB2E radar (Avionics Today, 2009). While the relative technological maturity of European, Israeli, and Russian AESAs is not directly indicative of the relative technological maturity of Chinas packaging technology, it is an indicator that the first generation AESA

31、produced by China is likely not on par with the US which is generally recognized as having the most technological mature T/R packaging technology (Kopp, 2014).俄罗斯首款装备战斗机的AESA雷达Zhuk-AE,包含652个T/R组件,并在2007年首次公开亮相。以色列的ELM-2052 AESA雷达,在F-16和FA-50战斗机上都拥有一定市场(后者是国联合航空工业集团在洛克希德马丁公司F-16上研发的一款战机),据估计,该型雷达拥有约5

32、12个T/R组件(Trimble公司,2014)。除美国本土公司外,只有法国航空业Thales公司在第一代AESA雷达(RB2E)上使用超过1000个T/R组件(Avionics Today杂志,2009)。虽然欧洲、以色列和俄罗斯的AESA雷达系统所采用的封装技术水平并不能直接说明中国的封装技术水平,但他们可作为参考,并说明在第一代AESA雷达系统中,中国不可能拥有与美国相同的技术水平,而美国被广泛承认是掌握最先进专业T/R组件封装技术的国家(Kopp,2014)。Image 4: T/R module count of US AESAs based upon the 2001 Defens

33、e Science Board report "Future DoD Airborne High-Frequency Radar Needs/Resources"(link provided in Source 1 citation, refer to page 6). Image Credit: Air Power Australia, 2008.图4:美国AESA系统T/R组件数量,数据来自美国国防科学委员会2001年报告未来国防机载高频雷达需求和资源。The prospect of Chinas TR packaging technology being on par

34、 with US firms within a single generation of radars is even more dubious when one examines the preference for an incremental technological development within the Chinese aerospace industry. Several Chinese aviation authors have hypothesized that the J-10B serves as a “technological stepping stone” w

35、ith respect to the development of the more advanced J-20. For example, Feng Cao argues the J-10B and the J-16 AESAs were likely used to test technology related to the J-20s AESA which would be a second generation Chinese design. By virtue of the larger nose volumes in the J-16 and J-20 airframes, it

36、 is highly probable the two aircraft will feature radars with more T/R modules than the J-10Bs radar. 通过参考中国航空工业的渐增性开发模式不难推测,在单独一代雷达中,中国的封装技术水平很难赶超美国同行。许多中国航空作家都预测,与更加先进的J-20相比,J-10B只扮演了“技术垫脚石”的角色。比如:朝峰(音译)认为,J-10B和J-16的AESA系统为装备J-20的AESA系统提供技术测试,而后者则是中国第二代有源相控雷达系统。凭借更宽敞的机头鼻锥部分容量,J-16和J-20所装备的AESA雷达

37、可能拥有比J-10B更多数量的T/R组件。The J-16 utilizes the Su-27BS airframe which has room for a 0.9-1.1 meter aperture in the nose which is on par with the F-15 and F-22 in terms of volume (Kopp, 2012). The 1,500 element N036 Tikhomirov NIIP AESA has a similar aperture size to the electronically scanned array (ESA

38、) Irbis-E radar featured in the Su-35 series of fighters which shares the base Su-27 airframe. If the 1,760 T/R figure is correct it would indicate the Chinese aerospace industry has eclipsed Russian T/R module packaging technology as the N036 is arguably the most advanced Russian fighter mounted AE

39、SA. Similarly, the most advanced US fighter mounted AESAs such as the APG-77(V)2 and APG-82(V)1 contain 1,500 T/R modules*. While the prospect of Chinese avionics firms reaching parity with US and Russian firms is more plausible within two generations of designs, the author is skeptical the 1,760 fi

40、gure is correct given the unsubstantiated nature of the image and the fairly substantial 260 T/R discrepancy between the J-16 radar figure compared to the most advanced US and Russian AESA designs. Therefore, the author speculates it would be more reasonable to assume a figure between 1,200 and 1,50

41、0 TR modules for the J-16 rather than the 1,760 figure.J-16采用了Su-27BS机身设计,在机头鼻锥部拥有约0.9m至1.1m的孔径,从容量方面看,与F-15和F-22相同(Kopp,2012)。提赫米洛夫仪器制造研究院制造的N036 AESA雷达系统拥有1500个T/R组件,与电子扫描阵列(ESA)Irbis-E雷达(无源相控阵PESA)孔径尺寸相似,后者在与Su-27机身结构设计相仿的Su-35上使用。如果说装备J-16的AESA雷达确实拥有1760个T/R组件,那么这将说明中国航空工业在T/R组件封装技术方面已经超越俄罗斯,因为N

42、036雷达据信已是目前俄罗斯战机装备的最先进AESA雷达系统。相类似地,最先进的美式战机所装备的APG-77(V)2 和APG-82(V)1雷达同样拥有约1500个T/R组件。通过两代AESA系统设计,中国航空工业技术水平赶超美国和俄罗斯同行的可能性值得怀疑,因此,作者怀疑1760个T/R组件的信息源于对未经证实图片的武断猜测,因而造成了J-16 AESA系统比美国和俄罗斯最先进AESA系统多260个T/R组件的说法。据此,作者推测,装备J-16的AESA雷达系统大约拥有1200至1500个T/R组件,而不是网传的1760个。Image 5: The sixth and most recent

43、 (as of January 2015) unveiled J-20 testing aircraft model "2015".图5:最新曝光(2015年1月)的第六代J-20测试验证机(代号:2015)。The tentative designation for the J-20's AESA is the Type 1475. While the nose volume of the J-20 is certainly large, the jet overall is longer and heavier than the F-22, no credibl

44、e figures for nose volume were available at the time of this publication. As with the J-16 T/R figure, the J-20 figure is substantially greater than that of the most advanced US and Russian designs. Even if the Nanjing Research Institute of Electronics Technology (NRIET) or the China Leihua Electron

45、ic Technology Research Institute (607 Institute) was able to develop sufficient packaging technology that would enable 1,856 T/R modules within the J-20's nose, the density of the T/R modules would create significant cooling problems. For example, Phazotron's single greatest difficulty in de

46、signing the Zuk-AE was the AESA's thermal management system (Kopp, 2008). Without an effective cooling system, the Type 1475 would not be reliable at peak power output and would cause significant maintenance issues. Furthermore, with such a high number of T/R modules, the Type 1475 would be vuln

47、erable to radar warning receiver (RWR) systems such as the ALR-94 without a very capable low probability intercept (LPI) mode.J-20 AESA系统方案设计为1475型。J-20的机头鼻锥空间比F-22更大,该款喷气式飞机机身更长,重量更大,目前,尚未见有关于机头鼻锥部位具体容量参数的相关报道。鉴于J-16的T/R组件数量,J-20的T/R组件应该比当前最先进的美国和俄罗斯AESA雷达设计更多。即便电子技术研究所(NRIET)或中国雷华电子技术研究所(607研究所)拥有

48、足够先进的封装技术将1856个T/R组件装进J-20的鼻子,如此密度的T/R组件结构将造成严重的散热问题。若不能有效解决散热问题,1475型雷达将不能提供可靠的最大功率发射性能,并带来重大的维护问题。此外,拥有如此大数量的T/R组件,使得1475型雷达很难使用低截获模式,从而更容易被雷达告警接收机(RWR)系统侦获,例如:ALR-94型RWR。Many discussions with respect to the "relative stealthiness" of fighter aircraft are limited to merely comparing rada

49、r cross section estimates while entirely neglecting alternate means of detecting aircraft such as RWRs or other emission locator systems. David Axe succinctly compares the process of how RWRs function to how a flash light carried by another person is easily visible in a dark room. AESAs emit a subst

50、antial amount of energy, especially designs with a greater number of T/R modules, which enables passive emission locator systems to detect an AESA. The addition of an LPI software for AESAs mitigates the risk of RWR detection.许多有关战斗机“相对隐身性”的讨论,只限于比较雷达截面积评估,而完全忽视了其他对空侦察手段,例如:雷达告警接收机(RWR)和其他辐射定位系统。David Axe将RWR的功能简单类比为在黑暗房间中寻找一个随身携带闪光灯的人。AESA系统辐射可观的能量,特别是拥有更多数量T/R组件的AESA系统,更容易向被动辐射定位系统暴露自己的位置。在AESA系统中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论