版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、开始输出结束YN2014年江苏省数学高考试卷数学()一、 填空题1.已知集合,则 。2.已知复数(为虚数单位),则复数的实部是 。3.右图是一个算法流程图,则输出的的值是 。4.从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为 。5.已知函数与函数,它们的图像有一个横坐标为的交点,则的值是 。6.某种树木的底部周长的取值范围是,它的频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100 cm.80 90 100 110 120 130 0.030 0.025 0.020 0.015 0.010 底部周长 cm 频率/组距 第6题图 7.在各项
2、均为正数的等比数列中,若,则的值是 。8.设甲,乙两个圆柱的底面面积分别为,体积为,若它们的侧面积相等且,则的值是 。9.在平面直角坐标系中,直线被圆截得的弦长为 。10.已知函数,若对于任意的都有,则实数的取值范围为 。ADCBP11. 在平面直角坐标系中,若曲线(为常数)过点,且该曲线在点处的切线与直线平行,则 。12.如图在平行四边形中,已知,则的值是 。13.已知是定义在上且周期为3的函数,当时,若函数在区间上有10个零点(互不相同),则实数的取值范围是 。14.若的内角满足,则的最小值是 。二、简答题15.已知。(1)求的值;(2)求的值。16.如图在三棱锥中,分别为棱的中点,已知,
3、求证(1)直线平面;(2)平面平面。AFCDPE17.如图在平面直角坐标系中,分别是椭圆的左右焦点,顶点的坐标是,连接并延长交椭圆于点,过点作轴的垂线交椭圆于另一点,连接。(1)若点的坐标为,且,求椭圆的方程;yxF1F2ACB(2)若,求椭圆离心率的值。18.如图:为保护河上古桥,规划建一座新桥,同时设立一个圆形保护区,规划要求,新桥与河岸垂直;保护区的边界为圆心在线段上并与相切的圆,且古桥两端和到该圆上任一点的距离均不少于80,经测量,点位于点正北方向60处,点位于点正东方向170处,(为河岸),。(1)求新桥的长;(2)当多长时,圆形保护区的面积最大?东AF2OC北BM19.(满分16分
4、)已知函数,其中是自然对数的底数。(1)证明:是上的偶函数;(2)若关于的不等式在上恒成立,求实数的取值范围;(3)已知正数满足:存在,使得成立,试比较与的大小,并证明你的结论。20. (满分16分)设数列的前项和为。若对任意的正整数,总存在正整数,使得,则称是“数列”。(1)若数列的前项和为,证明:是“数列”。(2)设是等差数列,其首项,公差,若是“数列”,求的值;(3)证明:对任意的等差数列,总存在两个“数列” 和,使得成立。数学()附加题21.(每题10分)A如图,是圆的直径,是圆上位于异侧的两点,证明ABDCOB已知矩阵,向量,是实数,若,求的值。C在平面直角坐标系中,已知直线的参数方程(为参数),直线与抛物线相交于两点,求线段的长。D已知,证明22. (10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同。(1)从盒中一次随机抽出2个球,求取出的2个球的颜色相同的概率;(2)从盒中一次随机抽出4个球,其中红球、黄球、绿球的个数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024芒果种植基地无人机喷洒农药服务合同3篇
- 仪器设备采购合同5篇
- 经济法关于大学生就业维权方面
- 赞助合同模板(5篇)
- 山东特殊教育职业学院《医学基本技能》2023-2024学年第一学期期末试卷
- 2025年度政府投资项目财务监管代理合同3篇
- 钟山职业技术学院《商务英语视听说(4)》2023-2024学年第一学期期末试卷
- 2024年矿山石料直供采购协议纲要版B版
- 2025年度新疆棉花采摘机械化作业合同范本3篇
- 南京师范大学泰州学院《口腔临床医学概论(口腔修复学)》2023-2024学年第一学期期末试卷
- 2024-2025学年初中七年级上学期数学期末综合卷(人教版)含答案
- 2024-2025学年北京市朝阳区高三上学期期末考试数学试卷(含答案)
- 四年级数学(除数是两位数)计算题专项练习及答案
- 办理落户新生儿委托书模板
- 四川省绵阳市涪城区2024-2025学年九年级上学期1月期末历史试卷(含答案)
- 2025年山东水发集团限公司社会招聘高频重点提升(共500题)附带答案详解
- 《湖南省房屋建筑和市政工程消防质量控制技术标准》
- 施工现场环境因素识别、评价及环境因素清单、控制措施
- 2024年医药行业年终总结.政策篇 易联招采2024
- 《工业园区节水管理规范》
- 儿科护士述职报告2024
评论
0/150
提交评论