第十三章SECTION3线性微分方程_第1页
第十三章SECTION3线性微分方程_第2页
第十三章SECTION3线性微分方程_第3页
第十三章SECTION3线性微分方程_第4页
第十三章SECTION3线性微分方程_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、§3 线性微分方程一、一般概念齐次线性微分方程与非齐次线性微分方程 设微分方程 (1)如果方程中的未知函数及其各阶导数都是一次的,这种方程称为线性微分方程.因为,所以(1)称为n阶线性微分方程. 当,(1)称为齐次线性微分方程.当,(1)称为非齐次线性微分方程.如果都是常数,(1)就称为常系数线性微分方程.解的存在和唯一性定理 如果和在区间内连续,且,那末对任意给定的初始条件方程(1)存在唯一解,式中为实数.函数的线性相关性 对于一组函数,如果有不全为零的常数,使等式在区间上成立,则称这组函数在区间上线性相关.否则称这组函数线性无关(线性独立).朗斯基行列式 如果是个次可微的函数,则

2、称行列式为函数的朗斯基行列式.朗斯基行列式具有以下性质:1o如果函数线性相关,那末它们的朗斯基行列式2o如果函数是某齐次线性微分方程的解,那末它们线性相关的充分必要条件是它们的朗斯基行列式n阶齐次线性微分方程解的结构 如果阶齐次线性微分方程, 有个线性无关的解.那末它的通解是这个解的线性组合,即其中是任意常数.这时又称为所给齐次线性微分方程的一组基本解.阶非齐次线性微分方程解的结构 非齐次线性微分方程的通解是它的一个特解与对应齐次方程的通解之和,即式中为任意常数.二、常系数线性微分方程1.齐次线性微分方程通解的求法特征方程与特征根对于阶实常系数齐次线性微分方程 (2)作相应的次代数方程 (3)

3、称它为微分方程(2)的特征方程,特征方程(3)的个根称为相应微分方程(2)的特征根.齐次方程的通解 为了求阶常系数齐次线性微分方程(2)的通解,只要找出它的个线性无关的特解就可以了.根据其全体特征根的各种情况,分别列出对应的线性无关特解. 特 征 根对应的线性无关特解(j = 1,2,n)是互异实根yj(x) = (j = 1,2,n)是特征方程的单根,则也是特征方程的单根y1(x) = cosxy2(x) = sinx是特征方程的r重实根y1(x) = , y2(x) = x,,yr(x) = xr-1是特征方程的r重复根,则也是r重复根2.非齐次线性微分方程特解的求法给定阶非齐次线性微分方

4、程它的特解可用下面两种方法来求.常数变易法 设其相应的齐次线性微分方程的通解是那末非齐次线性微分方程有一个特解式中是待定函数,它们的导数满足方程组例求微分方程的通解.解先求其相应的齐次方程的通解.因特征方程,有特征根.于是齐次方程的通解为利用常数变易法求非齐次方程的一个特解y*(x) .令而c1(x),c2(x)由下列方程组确定解方程组得积分后得(k1,k2是任意常数)(因为只要一个特解,可令k1=k2=0),所以原方程的通解为待定系数法对特殊类型的,可把特解的待定表达式及其相应的各阶导数代入原微分方程,然后比较同类项系数,定出的待定表达式里所含的系数,最后得出方程的特解.现在把部分情况下的特

5、解形式列表如下:R(x)类型特解y*(x)的待定表达式表中为已知常数;是正整数,如果的两个多项式的次数不相同,则取为次数较大者;是待定常数.表中右栏表达式分别是(自上而下)在不是其特征根的情形下的特解的待定表达式;如果它们是特征方程的重根,那末在表中的表达式上再乘以.例求解微分方程解先求相应的齐次线性方程y(4)+2y"+y=0的通解.由特征方程4+22+1=(2+1)2=0可知特征根=i都是二重根.所以齐次方程的通解为y(x)=c1cosx+c2sinx+c3x cosx+c4x sinx利用待定系数法,求非齐次线性方程的一个特解.由于R(x)=sin2x,属于表中第二类表达式(a

6、=0,b=1,=2),同时i=2i不是特征根,所以特解应为y*(x)=Acos2x+Bsin2x.代入原方程,比较同类项系数得所以特解是原方程的通解为式中c1,c2,c3,c4是任意常数.三、 欧拉方程具有形状 (是常数)的方程称为欧拉方程.欧拉方程可以通过变量替换或化成未知函数关于新自变量的常系数线性微分方程.例求解欧拉方程解令或t=lnx,原方程变成特征方程是是二重根.通解为y=e-t(c1+c2t)所以原方程的通解是四、齐次线性微分方程的幂级数解法 具有幂级数形式的解 一般变系数的齐次线性微分方程,不一定能找到用初等函数表示的解,这时可以考虑求具有幂级数形式的解.现以二阶齐次线性微分方程

7、为例说明解法(高阶方程同样适用).设其中和在可展成幂级数.要求方程在附近的解,只要先假定这个解具有幂级数形式然后形式地算出所需的各阶导数,代入原方程变成恒等式,确定待定的系数从而得出所求的幂级数解.如果,在不能展成幂级数,比如是x的有理分式,而分母在等于零,这时可试求具广义幂级数形式的解,其中a和都是待定常数.求勒让德方程的解方程称为勒让德方程,它的解称为勒让德函数.在x=0附近,方程的系数可以展成幂级数,令代入原方程,可以定出两个线性无关解所以勒让德方程的通解为式中A,B是任意常数,是高斯超几何级数.若n为整数,则与中有一个为多项式,另一个仍然是无穷级数.适当选取任意常数A,B,使当x=1时,多项式的值为1,这个多项式称为勒让德多项式,记作,它属于第一类勒让德函数.另一个则与线性无关,它是无穷级数,记作,属于第二类勒让德函数.此时,勒让德方程的通解为式中A,B为任意常数.求贝塞耳方程的解方程称为v阶贝塞耳方程,式中v为任意实数(或复数),它的解称为贝塞耳函数.因方程系数,在x=0不能展成幂级数,而是x的有理分式.令代入原方程,令x各次幂的系数等于零,得,先取=v,得所以取,得贝塞耳方程的一个特解,记作它称为v阶第一类贝塞耳函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论