版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、由上看出,转化法的关键是确定等效转动惯量Jv和等效力矩Mv,也即是机械中各构件质量的转化和外力的转化。 比较式(-2)和式(10.2.1-5)可知,为保证是“等效”的转化,必须遵守以下两个原则:动能相等原则 转化件的等效转动惯量所具有的动能应与原机械的总动能相等。 功率相等原则 转化件的等效力矩所作的元功(或瞬时功率)应与原机械上作用的全部外力所作的元功(或瞬时功率)相等。 由此可写出等效转动惯量Jv和等效力矩Mv的普遍公式。 按动能相等的原则,列出转化件与一般机械的动能等式 由此得 (-1) (-2) 式中 w 转化件的角速度;
2、160; n 机械中的活动构件数; i 构件号; mi 第i构件的质量; vsi 第i构件质心的速度。 第i构件的移动动能;Jsi 第i构件绕质心的转动惯量; wi 第i构件的角速度; 第i构件的转动动能; 由式(-2)看出,Jv总是为正。 按功率
3、相等的原则,列出转化件与一般机械上作用外力的功率等式 (-3)由此得 (-4) 式中 Pi 作用在第i构件上的力; vi 第i构件上力Pi作用点的速度; ai 力Pi方向与速度vi方向的夹角; Mi 作用在第i构件上的力矩; wi 第i构件的角速度。思 考 题 在式(-4)中如何反应出作用在第i构件上力Pi或力矩Mi为驱动力还是工作阻力? 夹角ai<90°,(Pivicosai)为正,说明Pi为驱动力。反之,ai>90°,(Pivicosai)为负,则Pi为工作阻力。 若Mi方向与wi同向,则Mi为驱动力矩,Mi、wi乘积前取“+”号;反之,取“-”号
4、。 同理,若按式(-4)计算得Mv为正,则表示Mv与w方向一致,反之,说明方向相反。 有时也按功率相等的原则,分别将驱动力和工作阻力转化成等效驱动力矩MD和等效阻力矩MR。这样可得Mv = MD -MR (-5) 问题讨论1 机械在稳定运转过程中,等效转动惯量是常值还是变值?在何种情况下是常值?何种情况下为变值? 由式(-2)判断,当机械的组成确定后,构件的质量mi和转动惯量Jsi均为定值,因此Jv值取决于各个速比值。故Jv可能为常值,也可能为变值。 若机械完全由齿轮机构所组成,则速比为常值,故Jv为常值;若机械中包含有连杆机构、凸轮机构等,则各个速比为变值,且为转化件的位置函数,故Jv为变值
5、,并作周期性变化。 问题讨论2 机械在稳定运转过程中,等效力矩Mv是常值还是变值?其变化规律取决于哪些因素? 由式(-4)判断,Mv既取决于速比,又取决于作用于机械外力的性质,因此Mv一般为多变量的函数。只有在一些特殊情况下,如外力均为常值,Mv可能为常值,也可能为转化件的位置函数。 问题讨论3 如何选择转化件?(或说成为“选哪个构件为转化件?”) 从转化法的基本原理看,机械中的任一活动构件均可选作转化件。但一般情况之下是选机械或机构中的原动件为转化件。因一般机构中的原动件由电机带动作定轴回转运动,所以转化件为回转构件(例如图-2所示),这样转化件的角速度即为待求的原动件的角速度。 问题讨论4
6、 能否选择移动构件作为转化件?其等效质量和等效力又如何确定? 图-1 可以选移动构件作为转化件(或说“转化件为移动构件”)。如对作为内燃机主体机构的曲柄滑块机构进行动力学研究时,就可选滑块为转化件,其物理模型如图-1所示。 mv 转化件的等效质量; Pv 作用在转化件上的等效力; v 转化件的移动速度。 转化件的运动方程为 同样可根据动能相等和功率相等的原则列出等效质量mv和等效力Pv的一般表达式 机械惯量机械惯量: 机械在转动时产生的惯量转动惯量(Moment of Inertia)。 转动惯量是表征刚体转动惯性大小的物理量,它与刚体的质量、质量相对于转轴的分布有关
7、。 转动惯量定义为:J= Mi*Ri2 (1)式中Mi表示刚体的某个质点的质量,Ri表示该质点到转轴的垂直距离。 刚体的转动惯量是由质量、质量分布、转轴位置三个因素决定的。 (2) 同一刚体对不同转轴的转动不同,凡是提到转动惯量,必须指明它是对哪个轴的才有意义。 转动惯量不是用在杠杆上,因为杠杆被认为是理想的,无质量,不弯折的刚性物体。转动惯量用来研究旋转的,有质量的刚体。1 转动惯量: 2刚体绕轴转动惯性的度量。又称惯性距、惯性矩(俗称惯性力距、惯性力矩) 其数值为J= mi*ri2,式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。 求和号(或积分号)遍及整个刚体。转动惯量
8、只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。 描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理1:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。 还有垂直轴定理:垂直轴定理 一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的
9、任意两正交轴的转动惯量之和。 表达式:Iz=Ix+Iy 刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离 ,称为刚体绕该轴的回转半径,其公式为_,式中M为刚体质量;I为转动惯量。 转动惯量的量纲为L2M,在SI单位制中,它的单位是kg·m2。 刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。 补充对转动惯量的详细解释及其物理意义: 先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv2,而且动能的实际物理意义是:物体相对某个系统(选定一个
10、参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。 E=(1/2)mv2 (v2为v的2次方) 把v=wr代入上式 (w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r) 得到E=(1/2)m(wr)2 由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替, K=mr2 得到E=(1/2)Kw2 K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。 这样分析一个转动问题就
11、可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。 为什么变换一下公式就可以从能量角度分析转动问题呢? 1、E=(1/2)Kw2本身代表研究对象的运动能量 2、之所以用E=(1/2)mv2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。 3、E=(1/2)mv2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质 心运动情况。 4、E=(1/2)Kw2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr2本身就是一种积 分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K= mr2 (这里的K和
12、上楼的J一样) 所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。 若刚体的质量是连续分布的,则转动惯量的计算公式可写成K= mr2=r2dm=r2dV 其中dV表示dm的体积元,表示该处的密度,r表示该体积元到转轴的距离。 补充转动惯量的计算公式 转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示。 对于杆: 当回转轴过杆的中点并垂直于轴时;J=mL2/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于轴时:J=mL2/3 其中m是杆的质量,L是杆的长度。 对与圆柱体: 当回转轴是圆柱体轴线时;J=mr2/2 其中m是圆柱体的质量,r
13、是圆柱体的半径。 转动惯量定理: M=J 其中M是扭转力矩 J是转动惯量 是角加速度 例题: 现在已知:一个直径是80的轴,长度为500,材料是钢材。计算一下,当在0.1秒内使它达到500转/分的速度时所需要的力矩? 分析:知道轴的直径和长度,以及材料,我们可以查到钢材的密度,进而计算出这个轴的质量m,由公式=m/v可以推出m=v=r2L. 根据在0.1秒达到500转/分的角速度,我们可以算出轴的角加速度=/t=500转/分/0.1s 电机轴我们可以认为是圆柱体过轴线,所以J=mr2/2。 所以M=J =mr2/2/t =r2hr2/2/t =7.8*103 *3.14* 0.042 * 0.
14、5 * 0.042 /2 * 500/60/0.1 =/m2 单位J=kgm2/s2=N*m 例题角加速度计算有误,应该为=/t=500转*2/分/0.1s汽车制动试验中关于电模拟惯量的研究 摘要:汽车制动性能的实验一般是在实验室完成的,是用等效惯量模拟实际运行中的制动情况。很显然,这种实验在汽车的研发阶段具有极其重要的作用,同时也是对乘车人员生命安全的重要保障。本文对汽车制动试验中的电模拟惯量进行了研究。首先,本文给出了等效转动惯量和驱动电流的计算方式,这两个参数在汽车制动性能试验中具有重要意义;接着,对常见的两种电惯量模拟方式,即转矩控制方式、转速控制方式进行了分析比较;最后,我们考虑了各
15、种损耗,结合计算机控制方法对电惯量模拟方式提出了改进方案。关键词:电惯量;制动试验;补偿时间;回归分析引言制动性能是衡量汽车性能的重要指标,汽车的制动性研究对于减少交通事故的发生具有重要意义。在国外一些着名的汽车厂商中,汽车的制动性能试验往往是设计初期的重中之重。当然,这部分试验是在实验室中完成的。其过程为:用主轴带动飞轮高速旋转,速度设定为汽车正常行驶速度,断电后,依靠电动机及驱动电流实现制动,从而完成一次模拟制动1 两种参数的计算1.1 等效转动惯量的计算将载荷转换为质量有:m=N/g转动惯量的原始计算公式为: J = r2dm但是我们考虑到,轮胎的结构分为钢架和轮胎表皮组成,我们习惯上把
16、圆形物体求惯量转化为圆环模型或者是圆盘模型圆环模型的计算式为: J-mr2圆盘模型的计算式为: J-1/2mr2我们发现,以上两式相差1/2,这给我们的计算带来了问题,为了确保计算的准确度,我们考虑从能量守恒的角度进行计算,因为这样的计算方法不会有任何的歧义。1.2 驱动电流的计算分析:驱动电流的作用是为了补偿在制动时机械惯量不足的部分,电流的计算可以转化为对于补偿扭矩的计算。2 两种常见电惯量模拟方案电惯量模拟可以有多种方式,其中主要包括转矩控制方法、转速控制方法。单纯的用某种方法进行控制往往存在本身的缺陷,下面,我们分别针对两种方法进行了分析具体的分析过程如下2.1 转矩控制方式说明:建立
17、电惯量转矩控制方式的数学模型,需要给出如下假设:I: 控制电机的电流连续II:加载时力矩建立时间很短。2.2 转速控制方式根据电惯量模拟的基本原理,只要使电惯量系统受载后的动力特性与机械惯量系统动力特性一致,即转速变化一致,即可以实现电惯量的模拟。分析如下:(1)被控量为转速,速度调节器起主导作用,通过最终速度给定和编码器反馈选择与速度反馈共同给定,同时采用PI 调节,可以实现转速无静差,并且对负载变化起抗扰动作用。电源调节器可以对速度进行监控,同时具有过载控制功能,提高系统的可靠性和稳定性。(2)使用转速控制方式对电惯量进行模拟时,只需要在原来控制系统的基础上进行参数调节即可实现惯量混合模拟
18、,控制简单。(3)在许多制动器试验台的测控系统中,对转速的控制采用双闭环调速系统,但是带来了一个很大的缺点就是转速的滞后性。而直流驱动器在转速控制上增加了速度监测和速度反馈,这样转速响应更快,前馈环节带来的误差可以由PI 控制器消除。同时对于拖磨试验,前馈环节还可以减少制动施加时产生的转速降落。3 计算机控制方法的改进与完善研究转矩控制法、转速控制法进行电惯量的模拟实验是基于理想状态下的模拟实验,这在现实中是不存在的。在实际运行中,各种损耗,例如胎面部分的平缓度、耐磨性能,以及胎圈钢丝的坚硬程度都会影响到系统分析结果。所以,我们寻求另一种分析方法构建误差分析模型2。本篇论文只大概地介绍这种方法
19、,具体实施方案见参考文献2。3.1 模型建立假设车辆在制动过程中作匀减速运动,预测的补偿时间小于实际制动时间,然后从能量角度对制动器惯性台架进行分析。对于纯机械惯量台架,制动器消耗的能量由电动机在制动之前提供,在制动过程中没有外部能量介入。而电模拟惯量台架不存在专门的储能机构,制动时电动机持续做功,以提供制动所需能量。考虑到设备整体的经济性,电机容量一般不能过大,惯量模拟范围受到限制。一种行之有效的方法是在电惯量台架中引入储能机构,即在主轴上安装一定数量的惯性飞轮,构成机械惯量和电惯量混合模拟台架。这种台架所需制动能量由两部分组成,一部分是飞轮储存的动能,由电动机在制动前提供;另一部分是电动机
20、在制动过程中根据不同控制策略(如转速控制方式、转矩控制方式和能量补偿法)补偿的能量。飞轮提供的能量所占比例越大,电动机补偿能量越少,电机容量要求越低。合理配置飞轮的惯量可以有效扩大台架惯量模拟范围及减小电机容量。3.2 系统损耗模型的构建制动器惯性台架中的惯量误差通常包括飞轮的加工误差和风阻及轴承损耗等阻力引起的误差。飞轮的加工误差是固定的,可以在制造过程中加以修正,在此不予考虑。阻力引起的误差相当复杂,难以逐一精确地定量分析。本文采用一种间接的损耗模型回归方法,对总的损耗能量进行分析。将飞轮升速到最高转速,切断驱动电机电源,同时使制动管路压力为0,飞轮会在风阻和轴承摩擦等阻力作用下自由停车,
21、停车过程中每隔15s 记录一次转速数据,可以通过回归的方法得出纯阻力情况下的转速方程,进而计算出损耗方程。由于阻力的变化规律未知,不能按线性规律处理,因而试验要遍历各飞轮组合。本题中,电惯量台架安装2 个惯性飞轮,上述试验步骤要重复4 次。采用最小二乘法对曲线进行回归,回归过程用SPSS 软件完成,选取二次模型为自由停车转速模型,则n = At2 ? Bt + C3.3 模拟试验为进一步确定能量补偿法中补偿时间、补偿起点和补偿终点等关键参数的控制规律,我们推荐汽车制动研究人员在制动器惯性台架进行定量的试验研究。试验前,先用制动器将主轴卡紧,对电机的加载力矩进行标定。在利用电惯量和等量的机械惯量
22、进行试验时,阻力作用的大小是近似相同的,为简化试验过程,不考虑阻力的影响(试验数据中实测机械惯量随制动条件变化而产生的误差正是由于阻力影响产生),以机械惯量数据为标准数据,与电惯量数据进行对比分析。补偿的总能量一定时,补偿时间越短,电机应提供的力矩越大,加之试验中的力矩加载系统为开环控制,很难保证在整个加载范围内不受系统参数变化(如电机电枢电阻随温度变化较大,标定时难以保证预热到与工作状态一致)的影响。可见,补偿时间取值应在减速度较小且模拟惯量较小时减小,而在减速度较大且模拟惯量较大时增加。通常,补偿能量、补偿时间和制动距离均可作为能量补偿的结束条件,由于试验条件的限制(制动距离的测量需要专门提供的脉冲计数器),仅对补偿能量和补偿时间进行试验分析。补偿能量作为结束条件时,电模拟惯量的数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年个人借款及债权转让协议
- 2024年阳江考客运从业资格证考试题目
- 2024年专业轻钢建筑施工协议
- 2024年桨扇发动机项目规划申请报告模范
- 2024年拉萨客运从业资格证模拟考试试题题库及答案
- 仓储工程病虫害防治原理
- 互联网基础设施建设投标指南
- 2024年多肉花盆项目提案报告模范
- 互联网企业保密风险防范指南
- 2024年船用配套设备项目立项申请报告模范
- 第二单元大单元教学设计 2023-2024学年统编版高中语文必修上册
- 2023年-2024年《高等教育管理学》考试题库(含答案)
- 商业银行贷款风险提示
- 生涯发展报告
- 工具快换装置配置介绍
- 2024全国职业院校技能大赛ZZ059安全保卫赛项规程+赛题
- 青岛版科学五年级上册全册练习题(含答案)
- 宿舍消防安全知识课件
- 化疗药物使用及护理要点
- 《台湾省的地理环境与经济发展》优教课件(第2课时)
- 《中国成人肥厚型心肌病诊断与治疗指南-2023》更新要点解读
评论
0/150
提交评论