下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、6.2.1 等式的性质与方程的简单变形知识技能目标1.理解并掌握等式的性质和方程的两个变形规则;2.使学生了解移项法则,即移项后变号,并且能熟练运用移项法则解方程;3.运用方程的两个变形规则解简单的方程过程性目标1.通过实验操作,经历并获得方程的两个变形过程;2.通过对方程的两个变形和等式的性质的比较,感受新旧知识的联系和迁移;3.体会移项法则:移项后要变号课前准备托盘天平,三个大砝码,几个小砝码教学过程一、创设情境同学们,你们还记得“曹冲称象”的故事吗?请同学说说这个故事小时候的曹冲是多么地聪明啊!随着社会的进步,科学水平的发达,我们有越来越多的方法测量物体的重量最常见的方法是用天平测量一个
2、物体的质量我们来做这样一个实验,测一个物体的质量(设它的质量为x)首先把这个物体放在天平的左盘内,然后在右盘内放上砝码,并使天平处于平衡状态,此时两边的质量相等,那么砝码的质量就是所要称的物体的质量 二、探究归纳请同学来做这样一个实验,如何移动天平左右两盘内的砝码,测物体的质量(一)实验如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗?教师引导学生通过天平实验观察、思考、分析天平和等式之间的联系(二)归纳等式的两个性质1.等式的两边都加上或都减去同一个数或整式,所得结果仍是等式2.等式的两边都乘以或都除以同一个不为零的数或式,所得结果仍是等式说明:课本指
3、出:“在小学我们还学过等式的两个性质”,但目前小学生尚未学过或未正式学过等式的两个性质。所以在此对等式的性质先作一番介绍上面的实验操作过程,反映了方程的变形过程,从这个变形过程,你发现了什么一般规律? 方程是这样变形的:方程的两边都加上或都减去同一个数或同一个整式,方程的解不变方程两边都乘以或都除以同一个不为零的数,方程的解不变请同学们回忆等式的性质和方程的变形规律有何相同之处?并请思考为什么它们有相同之处?通过实验操作,可求得物体的质量,同样通过对方程进行适当的变形,可以求得方程的解三、实践应用例1 解下列方程(1)x5 = 7; (2)4x = 3x4分析:(1)利用方程的变形规律,在方程
4、x5 = 7的两边同时加上5,即x 5 + 5 = 7 + 5,可求得方程的解(2)利用方程的变形规律,在方程4x = 3x4的两边同时减去3x,即4x3x = 3x3x4,可求得方程的解即 x = 12即 x =4 像上面,将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项(transposition)注(1)上面两小题方程变形中,均把含未知数x的项,移到方程的左边,而把常数项移到了方程的右边(2)移项需变号,即:跃过等号,改变符号例2 解下列方程: (1)5x = 2; (2) ;分析:(1)利用方程的变形规律,在方程5x = 2的两边同除以5,即5x÷(5)= 2
5、÷(5)(或),也就是x =,可求得方程的解(2)利用方程的变形规律,在方程的两边同除以或同乘以,即(或),可求得方程的解解 (1)方程两边都除以5,得 x = (2)方程两边都除以,得 x = , 即x = 或解 方程两边同乘以,得 x = 注:1.上面两题的变形通常称作“将未知数的系数化为1” . 2.上面两个解方程的过程,都是对方程进行适当的变形,得到x = a的形式例3下面是方程x + 3 = 8的三种解法,请指出对与错,并说明为什么?(1)x + 3 = 8 = x = 83 = 5;(2)x + 3 = 8,移项得x = 8 + 3,所以x = 11;(3)x
6、+ 3 = 8移项得x = 83 , 所以x = 5解 (1)这种解法是错的变形后新方程两边的值和原方程两边的值不相等,所以解方程时不能连等;(2)这种解法也是错误的,移项要变号;(3)这种解法是正确的四、交流反思本堂课我们通过实验得到了方程的变形规律:(1)方程的两边都加上或都减去同一个数或同一个整式,方程的解不变; (2)方程两边都乘以或都除以同一个不为零的数,方程的解不变通过上面几例解方程我们得出解简单方程的一般步骤:(1)移项:通常把含有未知数的项移到方程的左边,把常数项移到方程的右边;(2)系数化为1:方程两边同除以未知数的系数(或同乘以未知数系数的倒数),得到x = a 的形式必须牢记:移项要变号!五、检测反馈1.判断下列方程的解法对不对?如果不对,应怎样改正(1)9x = 4,得x = ;(2),得x = 1;(3),得x = 2;(4),得y =;(5)3 + x = 5,得x = 5 + 3;(6)3 = x2,得x = 23 2.(口答)求下列方程的解(1)x6 = 6; (2)7x = 6x4;(3)5x = 60; (4)3.下面的移项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省汕尾市(2024年-2025年小学五年级语文)人教版综合练习((上下)学期)试卷及答案
- 2023年大容量注射剂资金申请报告
- 2023年高纯氧化铌、氧化钽资金筹措计划书
- 五年级数学(小数除法)计算题专项练习及答案
- 高二上册政治总复习教案
- 猪场分娩舍培训总结
- 《电气控制系统设计与装调》教案 任务一:M7140型磨床控制线路基本构造及工作原理
- 山东省济宁市金乡县多校2024-2025学年二年级上学期期中语文试卷
- 陕西省神木市2024~2025学年七年级上学期期中质量检测调生物学试题(含答案)
- 湖南省邵阳市邵东市创新高级中学有限公司2024-2025学年高一上学期期中考试地理试题(含答案)
- 乳胶漆墙面施工方案范本
- 浙江省嘉兴市2023年八年级上学期期中数学试卷(附答案)
- Scratch在小学数学中的应用-以《长方形的周长》为例
- 化工企业停工方案范本
- 网络传播法规(自考14339)复习必备题库(含答案)
- 民法典合同编解读之合伙合同
- 高中英语学习情况问卷调查表及调查报告
- 求雨后姐弟小故事
- GRR计算公式表格
- 梅毒诊断标准
- 2023年catti三级笔译综合能力考试试题及答案解析
评论
0/150
提交评论