




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二节 函数解析的充要条件 一、主要定理二、典型例题三、小结与思考2一、主要定理一、主要定理定理一定理一. , , ),( ),( ),( : )( , ),(),()( xvyuyvxuyxyxvyxuyixzDzfDyxivyxuzf 点满足柯西黎曼方程点满足柯西黎曼方程并且在该并且在该可微可微在点在点与与件是件是可导的充要条可导的充要条内一点内一点在在则则内内定义在区域定义在区域设函数设函数柯西介绍柯西介绍黎曼介绍黎曼介绍3 : ),(),()( ,处的导数公式处的导数公式点点在在可得函数可得函数根据定理一根据定理一yixzyxivyxuzf .1)(yvyuixvixuzf 内解析的充
2、要条件内解析的充要条件函数在区域函数在区域 D. , ),( ),( : ),(),()( 程程并且满足柯西黎曼方并且满足柯西黎曼方内可微内可微在在与与内解析的充要条件是内解析的充要条件是域域在其定义在其定义函数函数定理二定理二DyxvyxuDyxivyxuzf 4解析函数的判定方法解析函数的判定方法: :. )( , )( )1(内是解析的内是解析的在在解析函数的定义断定解析函数的定义断定则可根据则可根据内处处存在内处处存在的导数在区域的导数在区域数数导法则证实复变函导法则证实复变函如果能用求导公式与求如果能用求导公式与求DzfDzf. )( ,R C ) ),( , ( , )( 2)(内
3、解析内解析在在的充要条件可以断定的充要条件可以断定那么根据解析函数那么根据解析函数方程方程并满足并满足可微可微因而因而、连续、连续的各一阶偏导数都存在的各一阶偏导数都存在内内在在中中如果复变函数如果复变函数DzfyxvuDvuivuzf 5二、典型例题二、典型例题例例1 判定下列函数在何处可导判定下列函数在何处可导, 在何处解析在何处解析:).Re()3();sin(cos)()2(;)1(zzwyiyezfzwx 解解,)1(zw ,yvxu . 1, 0, 0, 1 yvxvyuxu不满足柯西黎曼方程不满足柯西黎曼方程, . ,处处不解析处处不解析在复平面内处处不可导在复平面内处处不可导故
4、故zw 6)sin(cos)()2(yiyezfx ,sin,cosyevyeuxx ,sin,cosyeyuyexuxx ,cos,sinyeyvyexvxx . , xvyuyvxu 即即四个偏导数四个偏导数均连续均连续 . ,)(处处解析处处解析在复平面内处处可导在复平面内处处可导故故zf).()sin(cos)(zfyiyezfx 且且指数函数指数函数7)Re()3(zzw ,2xyix ,2xyvxu ., 0,2xyvyxvyuxxu 四个偏导数均连续四个偏导数均连续 , , 0 满足柯西黎曼方程满足柯西黎曼方程时时仅当仅当 yx ,0 )Re(处可导处可导仅在仅在故函数故函数 z
5、zzw .在在复复平平面面内内处处处处不不解解析析8例例2. )( , )( 内内为为一一常常数数区区域域在在则则内内处处处处为为零零在在区区域域如如果果DzfDzf 证证xvixuzf )(, 0 yuiyv, 0 xvyuyvxu故故 , , 常数常数常数常数所以所以 vu . )( 内为一常数内为一常数在区域在区域因此因此Dzf9三、小结与思考三、小结与思考 在本课中我们得到了一个重要结论在本课中我们得到了一个重要结论函数函数解析的充要条件解析的充要条件:黎曼方程黎曼方程并且满足柯西并且满足柯西内可微内可微在在与与 , ),( ),(Dyxvyxu. , xvyuyvxu 掌握并能灵活应用柯西掌握并能灵活应用柯西黎曼方程黎曼方程.10思考题思考题? ),(),()( 解析时应注意什么解析时应注意什么用柯西黎曼条件判断用柯西黎曼条件判断yxivyxuzf 11; , :R-Cxvyuyvxu 条件条件其次再看是否满足其次再看是否满足 ; ),( ),( 内是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 38403.3-2025皮革和毛皮防霉剂的测定第3部分:气相色谱-质谱法(甲醇萃取)
- GB 21342-2025焦炭单位产品能源消耗限额
- 护理职业安全
- 关+于“三极模式”信息传播格局探微
- 商务西服培训体系构建
- 运输租凭合同协议书
- 车站票款分成协议书
- 买卖车合同正规协议书
- 饭店欠款转让协议书
- 车辆相撞事故协议书
- SAP-TM运输管理模块操作手册(S4系统)
- 断亲协议书模板
- 2023-2024学年山东省青岛市西海岸新区6中英语七年级第二学期期末学业质量监测试题含答案
- 水利安全生产风险防控“六项机制”右江模式经验分享
- 《在竞争中双赢》教学设计 心理健康八年级全一册
- 中外美术评析与欣赏智慧树知到期末考试答案章节答案2024年湖南大学
- 《电力设备典型消防规程》(DL 5027-2015)宣贯
- MOOC 企业文化与商业伦理-东北大学 中国大学慕课答案
- (2024年)小学体育篮球规则课件
- 如何提高自身的网络安全意识
- 中医学理论体系的形成和发展
评论
0/150
提交评论