版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数的极值与导数课前预习学案一、预习目标了解并掌握函数极值的定义以及导数与函数极值的关系,会利用导数求函数的极值二、预习内容已知函数 f(x)=(1)求f(x)的单调区间,并画出其图象;(2)函数f(x)在x=-1和x=1处的函数值与这两点附近的函数值有什么关系?导数为多少?三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1.了解并掌握函数极值的定义以及导数与函数极值的关系2.会利用导数求函数的极值学习重难点:导数与函数极值的关系。二、学习过程(一)知识回顾:1、已知函数 f(x)=(1)求f(x)的单调区间,并画出其图象;(2
2、)函数f(x)在x=-1和x=1处的函数值与这两点附近的函数值有什么关系?导数为多少?2、观察图像,哪些是极大值? 哪些是极大值点? 哪些是极小值? 哪些是极小值点? 概念:什么是极大值? 什么是极大值点?什么是极小值? 什么是极小值点?什么是极值极大值:极大值点:极小值:极小值点:极值:思考与总结:1.极值是最大值或最小值吗?2.函数的极值是不是唯一的?3.极大值一定比极小值大吗?举例说明.4.点是极值点是在该 点的导数为0的什么条件?举例说明5.判别f(x0)是极大、极小值的方法是怎样的?6、函数的极值点能否出现在区间的内部,区间的端点能否成为极值点.而使函数取得最大值、最小值的点能在区间
3、的内部,也可能在区间的端点吗. (二)探究一、例1(课本例4)求的极值探究二、例2求y=(x21)3+1的极值探究三、例3 设,在和处有极值,且=1,求,的值,并求出相应的值。(三)反思总结请同学们归纳利用导数求函数极值的步骤:(四)当堂检测1、 已知函数,(1)求函数的的极值并画出函数的大致图像,(2)求函数在区间-3,4上的最大值和最小值。2、 求f(x)x33 x29 x5在4,4上的最大值和最小值.课后练习与提高1、下列说法正确的是( )A.函数在闭区间上的极大值一定比极小值大B.函数在闭区间上的最大值一定是极大值C.对于f(x)=x3+px2+2x+1,若|p|,则f(x)无极值D.
4、函数f(x)在区间(a,b)上一定存在最值2、函数y=1 +3xx3有()A.极小值1,极大值1B.极小值2,极大值3C.极小值2,极大值2D极小值1,极大值33求函数y=x327x的极值说一说,这节课你学到了什么?§函数的极值与导数一、教学目标知识与技能:理解极大值、极小值的概念;能够运用判别极大值、极小值的方法来求函数的极值;掌握求可导函数的极值的步骤;过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。 二、教学重点难点教学重点:极大、极小值的概念和判别方法,以及求可导函数的极
5、值的步骤.教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤.三、教学过程:函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解我们以导数为工具,对研究函数的增减及极值和最值带来很大方便四、学情分析 我们的学生属于平行分班,学生已有的知识和实验水平有差距。需要教师指导并借助动画给予直观的认识。五、教学方法发现式、启发式新授课教学基本环节:预习检查、总结疑惑情境导入、展示目标合作探究、精讲点拨反思总结、当堂检测发导学案、布置预习六、课前准备1学生的学习准备:2教师的教学准备:多媒体课件制作,课前预习学案,课内
6、探究学案,课后延伸拓展学案。七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。提问(二)情景导入、展示目标。设计意图:步步导入,吸引学生的注意力,明确学习目标。1、有关概念(1).极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点(2).极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(
7、x0),x0是极小值点(3).极大值与极小值统称为极值在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点:()极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是大或小;并不意味着它在函数的整个的定义域内最大或最小。()函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个()极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如上图所示,是极大值点,是极小值点,而>()函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点
8、2. 判别f(x0)是极大、极小值的方法:若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值3. 求可导函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f(x)(2)求方程f(x)=0的驻点(一阶导数为0的x的值)(3)检查 f(x)=0的驻点左右的符号;如果左正右负,那么f(x)在这个驻点处取得极大值;如果左负右正,那么f(x)在这个驻点处取得极小值;如果左右不改变符号,那么f(x)在这个驻点处无极值(三)合作探究、精讲点拨。例1(课本例4)求的极值解:因为,所以。令,得
9、下面分两种情况讨论:(1)当>0,即,或时;(2)当<0,即时.当x变化时, ,的变化情况如下表:2(-2,2)2+00+极大值极小值因此,=;=。函数的图像如图所示。例2求y=(x21)3+1的极值解:y=6x(x21)2=6x(x+1)2(x1)2, 令y=0解得x1=1,x2=0,x3=1当x变化时,y,y的变化情况如下表-1(-1,0)0(0,1)100+0+无极值极小值0无极值当x=0时,y有极小值且y极小值=0例3 设,在和处有极值,且=1,求,的值,并求出相应的值。解:,是函数的极值点,则1,1是方程的根,即有,又,则有,由上述三个方程可知,此时,函数的表达式为,令,得,当变化时,的变化情况表:-1(-1,1)1+00+极大值1极小值1由上表可知,(学生上黑板解答)多媒体展示探究思考题。在学生分组实验的过程中教师巡回观察指导。 (课堂实录) (四)反思总结,当堂检测。教师组织学生反思总结本节课的主要内容,并进行当堂检测。设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)(五)发导学案、布置预习。设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。九、板书设计极大值:极大值点:极小值:极小值点:极值:十、教学反思本课的设计采用了课前下发预习学案,学生预习本节内
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自行车专用马鞍包市场需求与消费特点分析
- 2024年度出国派遣务工人员住宿安排合同
- 照明设备市场需求与消费特点分析
- 灯座市场发展现状调查及供需格局分析预测报告
- 2024年度版权质押合同的质押权利与质押期限
- 计量仪器市场发展预测和趋势分析
- 2024年度服装行业网络安全保障合同
- 软梯市场需求与消费特点分析
- 2024年度成都二手房产买卖合同规范格式
- 2024年度医疗机构搬迁及信息系统迁移合同
- 温度传感器单片机实训
- 51单片机P0口工作原理详细讲解
- 企业高校项目合作协议
- 二手车交易合同书与协议书大全(共6页)
- 2022年新入团考试试卷及答案
- 浅议周记在班务工作中妙用
- 生物、地理会考背诵计划表
- U-Map:欧洲版本的高等教育分类体系
- 初中语文课外阅读句子或段落作用PPT课件
- 体育科学研究方法(第三版)第07章实验法
- 北斗系统在应急物流信息化中的应用ppt
评论
0/150
提交评论