版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课题:11.1全等三角形导学案 NO.01【学习目标】1、了解全等形、全等三角形的概念,明确全等三角形对应边、对应角相等。 2、在列举生活中常见的的全等图形的过程中,学会判断对应边、对应角的方法。 3、积极投入,激情展示,做最佳自己。教学重点:全等三角形的性质及寻找全等三角形的对应边、对应角。教学难点:寻找全等三角形的对应边、对应角。【学习过程】一、自主学习1、全等形。回忆:举出现实生活中能够完全重合的图形的例子? 同一张底片洗出的同大小照片是能够完全重合的(如图); 能够完全重合的两个图形叫做 . (1) 一个图形经过平移,翻转,旋转后,位置变化了,但 和 都没有改变,即平移,翻转,旋转前后
2、的图形 。(2) 如果两个图形全等,它们的形状大小一定都相同吗?全等形的特征是 和 2、全等三角形。能够完全重合的两个三角形叫做 (如下图)。“全等”用符号“”来表示,读作“全等于”,如上图记作ABCA1B1C1 叫对应顶点,AA1,BB1,CC1 叫对应边,ABA1B1,AC , B1C1 叫对应角,AA1,B ,C 注意:书写全等式时要求把对应顶点字母放在 的位置上。3、全等三角形的性质。 全等三角形的 相等, 相等。用符号表示为ABCA1B1C1 AB=A1B1, BC=B1C1, AC=A1C1(全等三角形的 ) A= A1, B= B1 , C= C1(全等三角形的 )二、合作探究1
3、、在找全等三角形的对应元素时一般有什么规律?CDABEABCDABCD PABDC有公共边的,公共边是对应边有公共角的,公共角是对应角有对顶角的,对顶角是对应角.一对最长的边是对应边,一对最短的边是对应边;一对最大的角是对应角,一对最小的角是对应角。根据上面的提示,你能总结寻找对应边、角的规律吗?2、如图:ABCDBF,找出图中的对应边,对应角.BDACF三、学以致用1、如图ABC ADE,若D=B, C= AED,则DAE= ; DAB= 。2、如图,ABCAED,AB是ABC的最大边,AE是AED的最大边, BAC 与 EAD对应角,且BAC=25°, B=35°,AB
4、=3cm,BC=1cm,求出E, ADE的度数和线段DE,AE 的长度。BAD与EAC相等吗?为什么?四、能力提升:(学有余力的同学完成)下图是一些等边三角形,你能把它们分别分成两个全等的三角形、三个全等的三角形、四个全等的三角形吗?五、当堂检测1、全等用符号 表示,读作: 。2、若 BCE CBF,则CBE= , BEC= ,BE= , CE= .3、判断题 1)全等三角形的对应边相等,对应角相等。( )2)全等三角形的周长相等,面积也相等。 ( ) 3)面积相等的三角形是全等三角形。 ( ) 4)周长相等的三角形是全等三角形。 ( )4、如图ABD EBC,AB=3cm,BC=5cm,求D
5、E的长六、我的收获与反思作业: 必做: 选做:课题:11.2三角形全等的判定(1)导学案 NO.02【学习目标】1、三角形全等的“边边边”的条件,了解三角形的稳定性2、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程3、积极投入,激情展示,做最佳自己教学重点:三角形全等的条件教学难点:寻求三角形全等的条件【学习过程】一、自主学习1、复习:什么是全等三角形?全等三角形有些什么性质?如图,ABCABC那么相等的边是: 相等的角是: 2、讨论三角形全等的条件(动手画一画并回答下列问题)(1)只给一个条件:一组对应边相等(或一组对应角相等),画出的两个三角形一定全等吗?(2)给出两个
6、条件画三角形,有_种情形。按下面给出的两个条件,画出的两个三角形一定全等吗?一组对应边相等和一组对应角相等 两组对应边相等两组对应角相等(3)、给出三个条件画三角形,有_种情形。按下面给出三个条件,画出的两个三角形一定全等吗?三组对应角相等三组对应边相等已知一个三角形的三条边长分别为6cm、8cm、10cm你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?a作图方法:b以小组为单位,把剪下的三角形重叠在一起,发现 ,这说明这些三角形都是 的c归纳:三边对应相等的两个三角形 ,简写为“ ”或“ ”d、用数学语言表述:在ABC和中, ABC 用上面的规律可以判断两个三角
7、形 判断 ,叫做证明三角形全等所以“SSS”是证明三角形全等的一个依据3、你能解释三角形为什么具有稳定性吗?二、合作探究1、例如图,ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架求证:ABDACD温馨提示:证明的书写步骤:准备条件:证全等时要用的间接条件要先证好;三角形全等书写三步骤:A、写出在哪两个三角形中,B、摆出三个条件用大括号括起来,C、写出全等结论。2、尺规作图。已知:AOB. 求作:DEF,使DEF=AOB三、学以致用1、如图,AB=AE,AC=AD,BD=CE,求证:ABC ADE。(*)2、已知:如图,AD=BC,AC=BD. 求证:OCD=ODC四、当堂检测下
8、列说法中,错误的有( )个(1)周长相等的两个三角形全等。(2)周长相等的两个等边三角形全等。(3)有三个角对应相等的两个三角形全等。(4)有三边对应相等的两个三角形全等A、1 B、2 C、3 D、4五、小结提高六、作业:课题:11.2三角形全等的判定(2)导学案 NO.03【学习目标】1、掌握三角形全等的“SS”条件,能运用“SS”证明简单的三角形全等问题2经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程3、积极投入,激情展示,做最佳自己。教学重点:三角形全等的条件教学难点:寻求三角形全等的条件【学习过程】一、自主学习1、复习思考(1)怎样的两个三角形是全等三角形?全等三角
9、形的性质是什么?三角形全等的判定(一)的内容是什么?(2)上节课我们知道满足三个条件画两个三角形有4种情形,三个角对应相等;三条边对应相等;两角和一边对应相等;两边和一角对应相等;前两种情况已经研究了,今天我们来研究第三种两边和一角的情况,这种情况又要分两边和它们的夹角,两边及其一边的对角两种情况。2、探究一:两边和它们的夹角对应相等的两个三角形是否全等? (1)动手试一试已知:ABC 求作:,使,(2) 把剪下来放到ABC上,观察与ABC是否能够完全重合?(3)归纳;由上面的画图和实验可以得出全等三角形判定(二):两边和它们的夹角对应相等的两个三角形 (可以简写成“ ”或“ ”)(4)用数学
10、语言表述全等三角形判定(二)在ABC和中, ABC 3、探究二:两边及其一边的对角对应相等的两个三角形是否全等?通过画图或实验可以得出: 二、合作探究1、已知:AD=CD,BD平分ADC 求证:A=C例2 如图,AC=BD,1= 2,求证:BC=AD.变式1: 如图,AC=BD,BC=AD,求证:1= 2.变式2: 如图,AC=BD,BC=AD,求证:C=D变式3: 如图,AC=BD,BC=AD,求证:A=B三、学以致用1、课本第10页第2题2、如图,已知OA=OB,应填什么条件就得到AOCBODOACDB(允许添加一个条件)四、能力提升:(学有余力的同学完成)如图,已知CA=CB,AD=BD
11、,M、N分别是CA、CB的中点,求证:DM=DN五、当堂检测如图,ADBC,D为BC的中点,那么结论正确的有 A、ABDACD B、B=C C、AD平分BAC D、ABC是等边三角形六、课堂小结1、两边和它们的夹角对应相等的两个三角形全等。简写成“ ”或“ ”2、到目前为止,我们一共探索出判定三角形全等的2种方法,它们分别是: 和 作业:第15页习题11.2 3-4 第16页第10题课题:11.2三角形全等的判定(3)导学案 NO.04【学习目标】1、掌握三角形全等的“角边角”“角角边”条件能运用全等三角形的条件,解决简单的推理证明问题2经历探索三角形全等条件的过程,体会利用操作、归纳获得数学
12、结论的过程3、积极投入,激情展示,体验成功的快乐。教学重点:已知两角一边的三角形全等探究教学难点:灵活运用三角形全等条件证明【学习过程】一、自主学习1、复习思考(1)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?(2)在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两种呢?2、探究一:两角和它们的夹边对应相等的两个三角形是否全等? (1)动手试一试。已知:ABC 求作:,使=B, =C,=BC,(不写作法,保留作图痕迹)(2) 把剪下来放到ABC上,观察与ABC是否能够完全重合?(3)归纳;
13、由上面的画图和实验可以得出全等三角形判定(三):两角和它们的夹边对应相等的两个三角形 (可以简写成“ ”或“ ”)(4)用数学语言表述全等三角形判定(三)在ABC和中, ABC 3、探究二。两角和其中一角的对边对应相等的两三角形是否全等(1)如图,在ABC和DEF中,A=D,B=E,BC=EF,ABC与DEF全等吗?能利用前面学过的判定方法来证明你的结论吗?(2)归纳;由上面的证明可以得出全等三角形判定(四):两个角和其中一角的对边对应相等的两个三角形 (可以简写成“ ”或“ ”)(3)用数学语言表述全等三角形判定(四)在ABC和中, ABC 二、合作探究1、例1、如下图,D在AB上,E在AC
14、上, AB=AC,B=C 求证:AD=AE2已知:点D在AB上,点E在AC上,BAO=CAO ,BEAC, CDAB,相交于点O,AB=AC, 求证:BD=CE三、学以致用1、课本第13页第1题2、如图,在ABC中,C=2B,AD是ABC的角平分线,1=B,求证AB=AC+AD六、课堂小结(1)今天我们又学习了两个判定三角形全等的方法是:(2)三角形全等的判定方法共有 (3)会根据已知两角及一边画三角形作业: 课题:11.2三角形全等的判定(4)导学案 NO.05【学习目标】1、理解直角三角形全等的判定方法“HL”,并能灵活选择方法判定三角形全等;2通过独立思考、小组合作、展示质疑,体会探索数
15、学结论的过程,发展合情推理能力;3. 极度热情、高度责任、自动自发、享受成功。教学重点:运用直角三角形全等的条件解决一些实际问题。教学难点:熟练运用直角三角形全等的条件解决一些实际问题。【学习过程】一、自主学习1、复习思考(1)、判定两个三角形全等的方法: 、 、 、 (2)、如图,RtABC中,直角边是 、 ,斜边是 (3)、如图,ABBE于B,DEBE于E,若A=D,AB=DE,则ABC与DEF (填“全等”或“不全等” )根据 (用简写法)若A=D,BC=EF,则ABC与DEF (填“全等”或“不全等” )根据 (用简写法)若AB=DE,BC=EF,则ABC与DEF (填“全等”或“不全
16、等” )根据 (用简写法)若AB=DE,BC=EF,AC=DF则ABC与DEF (填“全等”或“不全等” )根据 (用简写法)2、如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?(1)动手试一试。已知:RtABC 求作:Rt, 使=90°, =AB, =BC作法:(2) 把剪下来放到ABC上,观察与ABC是否能够完全重合?(3)归纳;由上面的画图和实验可以得到判定两个直角三角形全等的一个方法斜边与一直角边对应相等的两个直角三角形 (可以简写成“ ”或“ ”)ABCA1B1C1(4)用数学语言表述上面的判定方法在RtABC和Rt中, RtABCRt (5)直角三
17、角形是特殊的三角形,所以不仅有一般三角形判定全等的方法 “ ”、“ ”、 “ ”、 “ ”、 还有直角三角形特殊的判定方法 “ ”二、合作探究1、如图,AC=AD,C,D是直角,将上述条件标注在图中,你能说明BC与BD相等吗?2、如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角ABC和DFE的大小有什么关系?三、学以致用1、如图,ABC中,AB=AC,AD是高,则ADB与ADC (填“全等”或“不全等” )根据 (用简写法)2、判断两个直角三角形全等的方法不正确的有( )A、两条直角边对应相等 B、斜边和一锐角对应相等C、斜边和一条直角边对应相等 D、两个锐角对应相等3、如图,B、E、F、C在同一直线上,AFBC于F,DEBC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由答:AB平行于CD理由: AFBC,DEBC (已知) AFB=DEC= °(垂直的定义)BE=CF,BF=CE在Rt 和Rt 中 ( ) = ( ) (内错角相等,两直线平行)四、能力提升:(学有余力的同学完成)如图1,E、F分别为线段AC上的两个动点,且DEAC于E点,BFAC于F点,若AB=CD,AF=CE,BD交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年35kv架空线路施工合同样本版
- 2024年保健品竞争对手分析合同
- 2024年产品包装设计合同
- 围墙施工方案(围墙-施工方案)(两篇)
- 2024年个体运输者货运服务合同
- 2024年专利申请共享合同
- 2024年冷饮产品冷链运输及销售合同
- 2024年人力资源管理合作合同
- 企业信息系统网络运维服务方案
- 施工现场土地平整方案
- 糖皮质激素的合理应用课件
- 五年级四则混合运算
- 苏教版五年级上册第七单元解决问题的策略作业设计
- 《变压器有载分接开关振动声学现场测试方法》
- 管桁架施工方案
- 全国高考物理高考题说题比赛一等奖课件物理说题李焕景
- 华为MA5800配置及调试手册
- 中医养生活动策划方案
- 汽车坡道玻璃雨棚施工方案
- 二轮复习微专题湖泊专题
- 漫画解读非煤地采矿山重大事故隐患判定标准
评论
0/150
提交评论