版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1325242数形结合之美2在中国古代,人们把弯曲成直角的手臂的上半部分称为在中国古代,人们把弯曲成直角的手臂的上半部分称为 勾勾 ,下半部分称为,下半部分称为 股股 。我国古代学者把直角三角形。我国古代学者把直角三角形较短的直角边称为较短的直角边称为“勾勾”,较长的直角边称为,较长的直角边称为“股股”,斜边称为斜边称为“弦弦”. .勾勾股股勾股弦的定义3勾股定理的由来这个定理在中国又称为这个定理在中国又称为“商高定理商高定理”,在外国称为,在外国称为“毕达哥拉毕达哥拉斯定理斯定理”。为什么一个定理有这么多名称呢?商高是公元前十一世。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。
2、当时中国的朝代是西周,是奴隶社会时期。纪的中国人。当时中国的朝代是西周,是奴隶社会时期。 在中国古代大约是战国时期西汉的数学著作在中国古代大约是战国时期西汉的数学著作周髀算经周髀算经中记中记录着商高同周公的一段对话。商高说:录着商高同周公的一段对话。商高说:“故折矩,故折矩,勾广三,股修勾广三,股修四,经隅五四,经隅五。“什么是什么是”勾、股勾、股“呢?在中国古代,人们把弯曲成呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为直角的手臂的上半部分称为“勾勾”,下半部分称为,下半部分称为“股股”。商高那。商高那段话的意思就是说:当直角三角形的两条直角边分别为段话的意思就是说:当直角三角形的两条
3、直角边分别为3 3(短边)(短边)和和4 4(长边)时,径隅(就是弦)则为(长边)时,径隅(就是弦)则为5 5。以后人们就简单地把这个。以后人们就简单地把这个事实说成事实说成“勾三股四弦五勾三股四弦五”。由于勾股定理的内容最早见于商高。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作的话中,所以人们就把这个定理叫作 商高定理商高定理 。毕达哥拉斯(毕达哥拉斯(PythagorasPythagoras)是古希腊数学家,他是公元前五世)是古希腊数学家,他是公元前五世纪的人,纪的人,比商高晚出生五百多年比商高晚出生五百多年。希腊另一位数学家欧几。希腊另一位数学家欧几里德(里德(Eucl
4、idEuclid,是公元前三百年左右的人)在编著,是公元前三百年左右的人)在编著几何原本几何原本时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为定理称为“毕达哥拉斯定理毕达哥拉斯定理”,以后就流传开了,以后就流传开了。(为了庆祝这一定理。(为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理百牛定理”)走进数学史4走进数学史5 两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人两千多年来,人们对勾股定理
5、的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明因此不断出现关于勾股定理的新证法和研究它的证明因此不断出现关于勾股定理的新证法1 1传说中毕达哥拉斯的证法传说中毕达哥拉斯的证法2 2赵爽弦图的证法赵爽弦图的证法4 4美国第美国第2020任总统茄菲尔德的证法任总统茄菲尔德的证法3 3刘徽的证法刘徽的证法勾股定理的证明勾股定理的证明5 5其他证法其他证法6勾股定理是几何学中的明珠,勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人所以它充满魅力,千百年来,人们对
6、它的证明趋之若骛,其中有们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论次地反复被人炒作,反复被人论证。有资料表明,关于勾股定理证。有资料表明,关于勾股定理的证明方法已有的证明方法已有500500余种,仅我余种,仅我国清末数学家华蘅芳就提供了二国清末数学家华蘅芳就提供了二十多种精彩的证法。十多种精彩的证法。
7、 在这数百种证明方法中,有在这数百种证明方法中,有的十分精彩,有的十分简洁,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常的因为证明者身份的特殊而非常著名。著名。 现在在网络上看到较多的是现在在网络上看到较多的是1616种种, ,包括前面的包括前面的6 6种种, ,还有还有: :返回7 这棵树漂亮吗?如果在树上挂上这棵树漂亮吗?如果在树上挂上几串彩色灯泡,再挂上些小铃铛、小几串彩色灯泡,再挂上些小铃铛、小彩球、小礼盒、小的圣诞老人,是不彩球、小礼盒、小的圣诞老人,是不是更像一棵圣诞树是更像一棵圣诞树 也许有人会问:也许有人会问:“它与勾股定理它与勾股定理有什么关系吗?有什么关系吗?
8、”仔细看看,你会发现,奥妙在树仔细看看,你会发现,奥妙在树干和树枝上,整棵树都是由下方的这干和树枝上,整棵树都是由下方的这个基本图形组成的:个基本图形组成的:一个直角三角形一个直角三角形以及分别以它的每边为一边向外所作以及分别以它的每边为一边向外所作的正方形的正方形 这个图形有什么作用呢?不要小看它哦!古希腊的数学家毕达这个图形有什么作用呢?不要小看它哦!古希腊的数学家毕达哥拉斯就是利用这个图形验证了勾股定理哥拉斯就是利用这个图形验证了勾股定理 8 关于勾股定理的证明,现在人类保存下来的最早的关于勾股定理的证明,现在人类保存下来的最早的文字资料是欧几里得(公元前文字资料是欧几里得(公元前300
9、年左右)所著的年左右)所著的几几何原本何原本第一卷中的命题第一卷中的命题47:“直角三角形斜边上的正直角三角形斜边上的正方形等于两直角边上的两个正方形之和方形等于两直角边上的两个正方形之和”其证明是用其证明是用面积来进行的面积来进行的传说中毕达哥拉斯的证法传说中毕达哥拉斯的证法已知:如图,以在已知:如图,以在RtABC中,中,ACB=90,分别以,分别以a、b、c为为边向外作正方形边向外作正方形 求证:求证:a2 +b2=c29数学故事链接数学故事链接 相传两千五百年前,一次毕达哥拉斯去相传两千五百年前,一次毕达哥拉斯去朋友家作客,发现朋友家用砖铺成的地面反朋友家作客,发现朋友家用砖铺成的地面
10、反映直角三角形三边的某种数量关系,同学们,映直角三角形三边的某种数量关系,同学们,我们也来观察下面的图案,看看你能发现什我们也来观察下面的图案,看看你能发现什么?么?探索勾股定理探索勾股定理10数学家毕达哥拉斯的发现:数学家毕达哥拉斯的发现:A、B、C的面积有什么关系?的面积有什么关系?SA+SB=SCABC探索勾股定理11ABCS SA A=a=a2 2S SB B=b=b2 2S SC C=c=c2 2abca2+b2=c2设:直角三角形的三边长分别是设:直角三角形的三边长分别是a、b、c猜想猜想:两直角边两直角边a、b与斜边与斜边c 之间的关系?之间的关系?SA+SB=SC探索勾股定理返
11、回12 S矩形矩形ADNM2SADC又又正方形正方形ACHK和和ABK同底(同底(AK)、等高(即等高(即平行线平行线AK和和BH间的距离),间的距离), S正方形正方形ACHK2SABK ADAB,ACAK,CADKAB, ADC ABK 由此可得由此可得S矩形矩形ADNMS正方形正方形ACHK 同理可证同理可证S矩形矩形MNEBS正方形正方形CBFG S矩形矩形ADNMS矩形矩形MNEBS正方形正方形ACHKS正方形正方形CBFG 即即S正方形正方形ADEBS正方形正方形ACHKS正方形正方形CBFG , 也就是也就是 a2+b2=c2传说中毕达哥拉斯的证法传说中毕达哥拉斯的证法证明:从证
12、明:从RtABC的三边向外各作一个正方形(如图),作的三边向外各作一个正方形(如图),作CNDE交交AB于于M,那么正方形,那么正方形ABED被分成两个矩形连结被分成两个矩形连结CD和和KB返回由于矩形由于矩形ADNM和和ADC同同底(底(AD),等高,等高(即平行线即平行线AD和和CN间的距离间的距离),13 刘徽在刘徽在九章算术九章算术中对勾股定理的证明:中对勾股定理的证明:勾自乘为朱方,股自乘为青方,令出入相补,各勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也合成弦方之幂,开从其类,因就其余不移动也合成弦方之幂,开方除之,即弦也方除之,即弦也令正方形令正方形ABCD为
13、朱方,正方为朱方,正方形形BEFG为青方在为青方在BG间取一点间取一点H,使使AH=BG,裁下,裁下ADH,移至,移至CDI,裁下,裁下HGF,移至,移至IEF,是为是为“出入相补,各从其类出入相补,各从其类”,其,其余不动,则形成弦方正方形余不动,则形成弦方正方形DHFI勾股定理由此得证勾股定理由此得证 刘徽的证法刘徽的证法返回14 我国对勾股定理的证明采取的是我国对勾股定理的证明采取的是割补法,最早的形式见于公元三、四割补法,最早的形式见于公元三、四世纪赵爽的世纪赵爽的勾股圆方图注勾股圆方图注在这在这篇短文中,赵爽画了一张他所谓的篇短文中,赵爽画了一张他所谓的“弦图弦图”,其中每一个直角三
14、角形称,其中每一个直角三角形称为为“朱实朱实”,中间的一个正方形称为,中间的一个正方形称为“中黄实中黄实”,以弦为边的大正方形叫,以弦为边的大正方形叫“弦实弦实”,所以,如果以,所以,如果以a、b、c分别分别表示勾、股、弦之长,表示勾、股、弦之长,那么:那么: 赵爽弦图的证法赵爽弦图的证法224()2abcba 得:得: c2 =a2+ b2返回15学过几何的人都知道勾股定理它是几何中一个比较重要的定理,应用十分广学过几何的人都知道勾股定理它是几何中一个比较重要的定理,应用十分广泛迄今为止,关于勾股定理的证明方法已有泛迄今为止,关于勾股定理的证明方法已有500余种其中,美国第二十任总统伽余种其
15、中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话菲尔德的证法在数学史上被传为佳话总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否定的事情的经过是这样的:定的事情的经过是这样的:1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德他走着走着,突然发赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会
16、神地谈论着什么,时而大声争论,时现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底而小声探讨由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形于是伽菲在干什么只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角请问先生,如果直角三角形的两条直角边分别为形的两条直角边分别为3和和4,那么斜边长为多
17、少呢?,那么斜边长为多少呢?”伽菲尔德答到:伽菲尔德答到:“是是5呀呀”小男孩又问道:小男孩又问道:“如果两条直角边分别为如果两条直角边分别为5和和7,那么这个直角三角形的斜边长又是多,那么这个直角三角形的斜边长又是多少?少?”伽菲尔德不加思索地回答到:伽菲尔德不加思索地回答到:“那斜边的平方一定等于那斜边的平方一定等于5的平方加上的平方加上7的平方的平方”小男孩又说道:小男孩又说道:“先生,你能说出其中的道理吗?先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,伽菲尔德一时语塞,无法解释了,心理很不是滋味心理很不是滋味 于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题他
18、经过反于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法总统巧证勾股定理总统巧证勾股定理16美国第二十任美国第二十任总统伽菲尔德总统伽菲尔德总统巧证勾股定理总统巧证勾股定理aabbccADCBE返回17向常春的证明方法向常春的证明方法2111()()222ABCDSabbabaab 梯梯形形22211()22111222EBCAECDABCDSSScab bcabb 四四边边形形梯梯形形2221111122222aabcabb 222:abc 从从而而得
19、得到到 注注:这一方法是向常春这一方法是向常春于于1994年年3月月20日构想发日构想发现的新法现的新法abcba-bADCBEc18 我们用拼图的方法来说明我们用拼图的方法来说明勾股定理是正确的勾股定理是正确的试试 一一 试试证明证明:上面的大正方形的面积为:上面的大正方形的面积为: 下面大的正方形的面积为:下面大的正方形的面积为: 从右图中我们可以看出,这两个正方形的从右图中我们可以看出,这两个正方形的边长都是边长都是ab,所以面积相等,即,所以面积相等,即2142cab22142abab222222114422cabcbabcab19以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版木结构木工班组施工合同范本
- 2025年物流公司物流园区配送运输合同协议书3篇
- 二零二五年度枸杞采摘、加工、销售全流程服务合同3篇
- 2025年度窗帘清洗与保养服务合同3篇
- 二零二五版锅炉设备维护保养与故障排除合同范本3篇
- 2025年度淋浴房行业数据分析与服务合同4篇
- 2025年度城市街道绿化带绿植更新与养护服务合同范本4篇
- 2025年度二手房公积金贷款买卖合同(含房屋维修基金)4篇
- 二零二四年劳动争议解决常年法律顾问合同3篇
- 2024版售后服务委托合同书
- 2025年河南鹤壁市政务服务和大数据管理局招聘12345市长热线人员10人高频重点提升(共500题)附带答案详解
- 建设项目安全设施施工监理情况报告
- 春节期间安全施工措施
- 2025年大唐集团招聘笔试参考题库含答案解析
- 建筑工地春节期间安全保障措施
- 2025山东水发集团限公司招聘管理单位笔试遴选500模拟题附带答案详解
- 2024-2030年中国建筑玻璃行业市场深度调研及竞争格局与投资价值预测研究报告
- 泌尿:膀胱肿瘤病人的护理查房王雪-课件
- 企业短期中期长期规划
- 中华民族共同体概论讲稿专家版《中华民族共同体概论》大讲堂之第一讲:中华民族共同体基础理论
- 《商务沟通-策略、方法与案例》课件 第一章 商务沟通概论
评论
0/150
提交评论