21.1一次函数_第1页
21.1一次函数_第2页
21.1一次函数_第3页
21.1一次函数_第4页
21.1一次函数_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、交河中学交河中学 薛瑞山薛瑞山 学习目标 1.掌握正比例函数的概念. 2.弄清正比例函数解析式中字母的意义. 3.会求正比例函数的解析式.活动一:情境创设 2011年开始运营的京沪高速铁路全长1 318km.设列车平均速度为300km/h.考虑以下问题:(1)乘京沪高速列车,从始发站北京南站到终点站海虹桥站,约需要多少小时(结果保留小数点后一位)? 13183004.4(h)活动一:情境创设 (2)京沪高铁列车的行程y(单位:km)与运行时间t(单位:h)之间有何数量关系? y=300t(0t4.4)zX.x.K活动一:情境创设 (3)京沪高铁列车从北京南站出发2.5 h后,是否已经过了距始发

2、站1 100 km的南京站? y=3002.5=750(km), 这是列车尚未 到 达 距 始 发 站 1 100km的南京站.活动一:情境创设思考下列问题: 1. y=300t中,变量和常量分别是什么?其对应关系式是函数关系吗?谁是自变量,谁是函数? 2. y=2x中,变量和常量分别是什么?其对应关系式是函数关系吗?谁是自变量,谁是函数? 活动二:问题再现 下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式:(1)圆的周长l 随半径r的变化而变化(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的变化而变化2lrVm8 . 7活动二:问题

3、再现 (3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随练习本的本数n的变化而变化(4)冷冻一个0C的物体,使它每分钟下降2C,物体问题T(单位:C)随冷冻时间t(单位:min)的变化而变化nh5 . 0tT2zX.x.K 认真观察以上出现的四个函数解析式,分别说出认真观察以上出现的四个函数解析式,分别说出哪些是常数、自变量和函数哪些是常数、自变量和函数函数解析式函数解析式常数常数自变量自变量函数函数(1)l=2r(2)m=7.8V(3)h=0.5n(4)T= 2t这些函数有什这些函数有什么共同点?么共同点? 这些函数都这些函数都是常数与自变是常数与自变量的乘积的

4、形量的乘积的形式!式! 2rl 7.8Vm 0.5nh 2tT活动二:问题再现活动三:形成概念 1.如果我们把这个常数记为k,你能用数学式子表达吗? y=kx 2.对这个常数k有何要求呢?为什么? 常数k0 3.请你尝试给这类特殊函数下个定义: 形如 y=kx(k0)的函数,叫做正比例函数,其中k叫比例系数 4.这个函数表达式在形式上一个单项式还是多项式?你能指出它的系数是什么?次数为多少? 形式上是一个一次单项式,单项式系数就是比例系数kzX.x.K活动三:形成概念 5.正比例函数y=kx(常数k0)的自变量x的取值范围是什么? 一般情况下正比例函数自变量取值范围为一切实数,但在特殊情况下自

5、变量取值范围会有所不同 6.如何理解y与x成正比例函数?反之,y=kx(k为常数, k0)表示什么意义? y与x成正比例函数 y=kx(常数k0)活动四:辨析概念 1.下列式子,哪些表示y是x的正比例函数?如果是,请你指出正比例系数k的值 (1)y=-0.1x (2) (3)y=2x2 (4)y2=4x (5)y=-4x+3 (6)y=2(xx2 )+2x2 2xy 是正比例函数,是正比例函数,正比例系数为正比例系数为-0.1是正比例函数,是正比例函数,正比例系数为正比例系数为0.5不是正比例函数不是正比例函数不是正比例函数不是正比例函数不是正比例函数不是正比例函数是正比例函数,正比例系数为是

6、正比例函数,正比例系数为2判定一个函数是否是正比例函数,要从化简后来判断!判定一个函数是否是正比例函数,要从化简后来判断!活动四:辨析概念 2.列式表示下列问题中y与x的函数关系,并指出哪些是正比例函数 (1)正方形的边长为xcm,周长为ycm. y=4x 是正比例函数 (2)某人一年内的月平均收入为x元,他这年(12个月)的总收入为y元 y=12x 是正比例函数 (3)一个长方体的长为2cm,宽为1.5cm,高为xcm ,体积为ycm3. y=3x 是正比例函数活动五:判定正误 下列说法正确的打“”“”,错误的打“” (1)若y=kx,则y是x的正比例函数( ) (2)若y=2x2,则y是x

7、的正比例函数( ) (3)若y=2(x-1)+2,则y是x的正比例函数( ) (4)若y=2(x-1) ,则y是x-1的正比例函数( ) 在特定条件下自变量可能不单独就是在特定条件下自变量可能不单独就是x了,了,要注意自变量的变化要注意自变量的变化活动六:理解概念1.1.如果如果y=(=(k-1)-1)x,是是y关于关于x的正比例函数,的正比例函数,则则k满足满足_.2.2.如果如果y=kxk- -1 1,是是y关于关于x的正比例函数,的正比例函数,则则k=_.=_.3.3.如果如果y=3=3x+k- -4 4,是是y关于关于x的正比例函数,的正比例函数,则则k=_.=_.k124活动七: 运

8、用概念1.1.已知正比例函数已知正比例函数y=kx,当,当x=3=3时,时,y=-15=-15,求,求k的值的值2.2.若若y关于关于x成正比例函数,当成正比例函数,当x=4=4时,时,y=-2.=-2.(1 1)求出)求出y与与x的关系式;的关系式;(2 2)当)当x=6=6时,求出对应的函数值时,求出对应的函数值y. .k=-5y= -0.5xy= -3待定系数法例:已知例:已知y与与x成正比例,当成正比例,当x=4时,时,y=8,试,试求求y与与x的函数解析式的函数解析式解:解:设设y与与x的函数解析式为:的函数解析式为:y=kx又又当当x=4时,时,y=88=4kk=2y与与x的函数解

9、析式为:的函数解析式为:y=2x求正比例函数解析式一般步骤:1、设所求的正比例函数解析式。2、把一组非零对应值代入所设的解析式,4、把k的值代入所设的解析式,写出解析式3、 求出比例系数 k活动八:课堂小结与作业布置 你如何理解正比例函数的意义?能从哪几个方面去认识正比例函数? 1.从语言描述看: 函数关系式是常量与自变量的乘积 2.从外形特征看: (1)一般情况下y=kx(常数k0); (2)在特定条件下自变量可能不单独是x了,要注意问题中自变量的变化. 3.从结果形式看: 函数表达式要化简后才能确认为正比例函数 已知y与x+2 成正比例,当x=4时,y=12, 求当x=5时,y的值解:y与

10、x +2 成正比例设y=k(x+2)把x=4时,y=12代入求得y=2(x+2)当x=5时y=2(5+2)=14作业 1.下列函数是正比例函数的是( ) A.y=2x+1 B.y=8+2(x-4) C.y=2x2 D.y= 2.下列问题中的y与x成正比例函数关系的是( ) A.圆的半径为x,面积为y B.某地手机月租为10元,通话收费标准为0.1元/min,若某月通话时间为x min,该月通话费用为y元 C. 把10本书全部随意放入两个抽屉内, 第一个抽屉放入x本,第二个抽屉放入y本 D.长方形的一边长为4,另一边为x,面积为yx21作业 3.关于y= 说法正确的是( ) A.是y关于x的正比例函数,正比例系数为-2 B.是y关于x的正比例函数,正比例系数为 C.是y关于x+3的正比例函数,正比例系数为-2 D.是y关于x+3的正比例函数,正比例系数为 4.若y=kx+2k-3是y关于x的正比例函数,则k=_. 5.若

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论