下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2013中考数学压轴题函数面积问题精选解析(三)例5 如图1,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限动点P在正方形ABCD的边上,从点A出发沿ABCD匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒(1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图2所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,OPQ的面积最大,并求此时P点的坐标(4)如果点P、Q保持原速度速度不变,当点P沿ABCD匀速运动时,OP与P
2、Q能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由 图1 图2解析(1)(1,0),点P每秒钟运动1个单位长度(2)过点B作BEy轴于点E,过点C作x轴的垂线交直线BE于F,交x轴于H在RtABE中,BE8,AE1046,所以AB10由ABEBCF,知BFAE4,CFBE6所以EF8614,CH8412因此点C的坐标为(14,12)(3)过点P作PMy轴于M,PN轴于N因为PM/BE,所以,即因此于是设OPQ的面积为(平方单位),那么,定义域为010因为抛物线开口向下,对称轴为直线,所以当时,OPQ的面积最大此时P的坐标为(,)(4)当或时, OP与PQ相等 图3 图4考点伸展附加
3、题的一般思路是:点Q的横坐标是点P的横坐标的2倍先求直线AB、BC、CD的解析式,根据直线的解析式设点P的坐标,再根据两点间的距离公式列方程POPQ附加题也可以这样解:如图4,在RtAMP中,设AM3m,MP4 m,AP5m,那么OQ8m根据AP、OQ的长列方程组解得如图5,在RtGMP中,设GM3m,MP4 m,GP5m,那么OQ8m在RtGAD中,GD7.5根据GP、OQ的长列方程组解得如图6,设MP4m,那么OQ8m根据BP、OQ的长列方程组解得,但这时点P不在BC上 图5 图6例6 在直角坐标系中,抛物线经过点(0,10)和点(4,2)(1)求这条抛物线的解析式.(2)如图1,在边长一
4、定的矩形ABCD中,CD1,点C在y轴右侧沿抛物线 滑动,在滑动过程中CDx轴,AB在CD的下方.当点D在y轴上时,AB落在x轴上.求边BC的长.当矩形ABCD在滑动过程中被x轴分成两部分的面积比为1:4时,求点C的坐标.图1解析(1)因为抛物线经过点(0,10)和点(4,2),所以 解得,因此抛物线的解析式为yx26x10(2)因为CD1,点D在y 轴上,所以点C的横坐标为1在yx26x10中,当x1时,y5所以边BC的长为5因为矩形边长一定,所以BC5如图2,当矩形ABCD在x轴上方部分的面积与这个矩形面积的比为1:5时,点C的纵坐标为1解方程x26x101,得此时点C的坐标为(3,1)如图3,当矩形ABCD在x轴上方部分的面积与这个矩形面积的比为5:1时,点C的纵坐标为4解方程x26x104,得,此时点C的坐标为(3,4)或(3,4) 图2 图3考点伸展在本题情景下,以CD为半径的C如果与坐标轴相切,那么符合条件的点C有哪些?解:由于CD1,抛物线的顶点为(3,1),因此与坐标轴相切的C有三个,点C的坐标分别为(1,5),(1,17),(3,1)在本题情景下,以CB为半径的C如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械基础 课件 模块六任务二 链传动
- 中医药基础专题知识宣教
- (立项备案申请模板)超薄金刚石项目可行性研究报告参考范文
- (安全生产)选矿厂安全生产标准化自评报告
- (2024)酒文化创意产业园建设项目可行性研究报告(一)
- 清明节缅怀先烈主题班会71
- 2023年薄板木船项目筹资方案
- 植物学题库及答案
- 《重症肺炎诊治》课件
- 养老院老人心理咨询师培训制度
- 【基于抖音短视频的营销策略分析文献综述2800字(论文)】
- 2021-2022学年度西城区五年级上册英语期末考试试题
- 《组织行为学》(本)形考任务1-4
- 广东省广州市白云区2022-2023学年九年级上学期期末语文试题
- 剧本-进入黑夜的漫长旅程
- DB43-T 958.3-2023 实验用小型猪 第3部分:配合饲料
- 化肥购销合同范本正规范本(通用版)
- 健康管理专业职业生涯规划书
- 外墙岩棉板施工方案
- 吊装葫芦施工方案
- 自动化设备调试规范
评论
0/150
提交评论