下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3轴对称与坐标变化1图形的坐标变化与图形平移之间的关系在平面直角坐标系中,当纵坐标不变,横坐标都加上或减去一个正数a时,图形会向右或向左平移a个单位长度;当横坐标不变,纵坐标都加上或减去一个正数a时,图形会向上或向下平移a个单位长度【例1】 如图所示的箭头是将坐标为(0,0),(1,2),(1,1),(4,1),(4,1),(1,1),(1,2),(0,0)的点用线段依次连接而成的,若纵坐标保持不变,横坐标分别加1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?若是横坐标保持不变,纵坐标分别减2呢?分析:当横坐标不变,纵坐标加上或减去一个正数a时,原图形就相应地向上或向
2、下平移a个单位长度;当纵坐标不变时,横坐标加上或减去一个正数a时,则原图形会向右或向左平移a个单位长度解:若纵坐标保持不变,横坐标分别加1,则所得各点的坐标依次是(1,0),(2,2),(2,1),(5,1),(5,1),(2,1),(2,2),(1,0),将各点用线段依次连接起来,所得图案如图所示,所得图案与原图案相比,箭头的形状、大小不变,整个箭头向右平移了1个单位长度若横坐标保持不变,纵坐标分别减2,则所得各点的坐标依次是(0,2),(1,0),(1,1),(4,1),(4,3),(1,3),(1,4),(0,2),将各点用线段依次连接起来所得图案如图所示,所得图案与原图案相比,箭头的形
3、状、大小不变,整个箭头向下平移了2个单位长度点评:解答本题的关键是求出图形变化后的点的坐标,再根据坐标用线段依次将点连接起来即可得到新图案2.图形的坐标变化与图形的伸长和压缩之间的关系在平面直角坐标系中,当图形的纵坐标不变,横坐标扩大或缩小一定倍数时,图形就相应地被横向拉长或压缩该倍数,而纵向不变;当图形的横坐标不变,纵坐标扩大或缩小一定倍数时,图形就相应地被纵向拉长或压缩该倍数,而横向不变【例2】 如图所示的小船是将坐标为(1,0),(3,0),(4,1),(2,1),(2,3),(1,2),(1,1),(0,1),(1,0)的点用线段依次连接而成的,现将各点的坐标作如下变化:纵坐标保持不变
4、,横坐标分别变成原来的1.5倍,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?解:纵坐标保持不变,横坐标分别变为原来的1.5倍,所得各个点的坐标依次是:(1.5,0),(4.5,0),(6,1),(3,1),(3,3),(1.5,2),(1.5,1),(0,1),(1.5,0),将各点用线段依次连接起来,所得图案如图所示,与原图相比,整条船被横向拉长为原来的1.5倍析规律 坐标与图形变化的对应关系当横坐标不变,纵坐标扩大或缩小为原来的a倍时,图形就要被纵向拉长或压缩为原来的a倍;当纵坐标不变,横坐标扩大或缩小为原来的b倍时,原图形就要被横向拉长或压缩为原来的b倍3图形的
5、坐标变化与图形的轴对称之间的关系在平面直角坐标系中,当图形上各点的横坐标不变,纵坐标乘1时,所得的新图形与原图形关于x轴对称;当图形上各点的纵坐标不变,横坐标乘1时,所得的新图形与原图形关于y轴对称;当图形上各点的横、纵坐标都乘1时,那么所得到的新图形与原图形关于原点对称谈重点 对称点的坐标变化规律对应点的坐标对称情况可以简单记为:关于横轴对称,“横不变,纵相反”;关于纵轴对称,“纵不变,横相反”;关于原点对称,“全相反”【例3】 按要求回答问题:(1)在平面直角坐标系中描出点(1,2),(1,4),(1,6),(3,6),(1,4),(3,2),(1,2),并将各点用线段依次连接起来(2)将
6、上述各点作如下变化:纵坐标不变,横坐标分别变成原来的2倍,再将所得的点用线段按第一问中的顺序连接起来,所得的图形与原来的图形相比有什么变化?横坐标保持不变,纵坐标分别加3呢?横、纵坐标分别乘1呢?分析:解决本题的关键是分别在两坐标轴上找到对应点,过这两点分别平行于两坐标轴的直线的交点即为所求的点如要描点(1,6)的位置,先在x轴上找到点1,在y轴上找到点6,过这两点分别平行于两坐标轴的直线的交点即为所求的点;理解平移、旋转、伸缩等图形的特征解:(1)如图所示(2)按题中的变化要求各点的坐标依次是:(2,2),(2,4),(2,6),(6,6),(2,4),(6,2),(2,2)所得的图案如图所
7、示,与原图案相比,图形被横向拉伸为原来的2倍各点的坐标依次是:(1,5),(1,7),(1,9),(3,9),(1,7),(3,5),(1,5)所得的图案如图所示,与原来的图案相比,图形向上平移了3个单位长度各点的坐标依次是:(1,2),(1,4),(1,6),(3,6),(1,4),(3,2),(1,2)所得的图案如图所示,与原图案相比,图形绕O点旋转了180°,即两个图形关于O点成中心对称4图形的变换与点的坐标的关系将图形放在平面直角坐标系中,我们可以求得各顶点的坐标,反过来,知道了一些点的坐标,我们还可以将各点顺次连接起来得到一些有趣的图形通过点的坐标的变化与图形的变换,可以得
8、到图形变换的规律图形是由点组成的,点的坐标发生了变化,图形也会发生相应的变化;图形移动时,点的坐标也发生变化其变化规律为:(1)纵坐标不变,横坐标按比例增大时,图形被横向拉长;纵坐标不变,横坐标按比例减小时,图形被横向“压缩”(2)图形向右平移时,纵坐标不变,横坐标增大;图形向左平移时,纵坐标不变,横坐标减小;图形向上平移时,横坐标不变,纵坐标增大;图形向下平移时,横坐标不变,纵坐标减小(3)横坐标加上一个数,纵坐标不变时,图形左、右平移(加负数,左移,加正数,右移);纵坐标加上一个数,横坐标不变时,图形上、下平移(加正数,上移,加负数,下移)(4)横坐标不变,纵坐标乘1时,所得图形与原图形关
9、于x轴对称;纵坐标不变,横坐标乘1时,所得图形与原图形关于y轴对称图1【例4】 如图1,在平面直角坐标系内,一个封闭的图形ABCDE上各顶点的坐标分别为A(2,0),B(1,2),C(2,1),D(3,2),E(2,0)(1)将各顶点的横坐标都加上3,纵坐标不变,并把得到的顶点依次连接,则所得的图形和原图形相比,位置有怎样的变化?(2)如果将各顶点的纵坐标都加上3,横坐标不变,顺次连接各顶点,所得图形与原图形的位置有什么变化?(3)将各顶点的横坐标都加上4,纵坐标都加上5,顺次连接各顶点,所得的图形与原图形的位置有怎样的变化?图2解:(1)A,B,C,D,E点的横坐标都加上3,所得顶点的坐标分
10、别是A1(1,0),B1(4,2),C1(5,1),D1(6,2),E1(5,0),依次连接各点得图形A1B1C1D1E1,图形A1B1C1D1E1相当于图形ABCDE向右平移了3个单位长度后得到的(如图2)(2)A,B,C,D,E点的纵坐标都加上3,所得顶点的坐标分别是A2(2,3),B2(1,5),C2(2,4),D2(3,5),E2(2,3),顺次连接各点得到图形A2B2C2D2E2,图形A2B2C2D2E2相当于图形ABCDE向上平移3个单位长度后得到的(如图2)(3)各顶点的坐标横坐标都加上4,纵坐标都加上5,所得顶点的坐标分别是A3(2,5),B3(5,7),C3(6,6),D3(
11、7,7),E3(6,5)依次连接各顶点,所得图形A3B3C3D3E3相当于先把图形ABCDE向右平移4个单位长度,再向上平移5个单位长度后得到的(如图2) 5从变化的“鱼”中探索坐标变化与图形变化的关系通过变化的“鱼”,在坐标系内,将图形的坐标变化与图形的平移、轴对称、伸长、压缩巧妙地融合在一起,既体现了图形的现实性、趣味性,又体现了数学的深刻性以及数形结合的思想方法平移:原图形的坐标中,横坐标保持不变,纵坐标分别增加(减少)a(a0),则所得图案被向上(向下)平移a个单位长度,形状、大小未发生改变;反之,纵坐标不变,横坐标分别增加(减少)a(a0),则所得图案被向右(向左)平移a个单位长度轴
12、对称:原图形的坐标中,横(纵)坐标保持不变,纵(横)坐标分别乘1,则所得的图案与原图案关于横轴(纵轴)对称伸长:新图案的坐标变为原图案坐标的a倍,则将原图案伸长a倍,便可得新图案压缩:新图案的坐标变为原图案坐标的(a1),则将原图案压缩,便可得新图案【例5】 下面的方格纸中画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE对称的图案(只画图,不写作法);(3)以G为原点,GE所在直线为x轴,GB所在直线为y轴,小正方形的边长为单位长度建立平面直角坐标系,可得点A的坐标是(_,_)分析:(1)只要数一数正方形的个数就能解决;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年特殊岗位人员返聘劳动合同2篇
- 政府购买服务岗位人员劳务合同(2篇)
- 打机井协议书(2篇)
- 2024年文艺晚会演出委托制作与执行协议3篇
- 2025年重庆模拟考货运从业资格
- 2025年南宁货运从业资格证考试题及答案解析
- 2025年阿坝货运从业资格证怎么考
- 七年级下册语文第2课 说和做
- 2024年楼宇自动化监控设备供应合同
- 《春季食疗养生》课件
- 2024秋人教版八年级上册物理教师教学用书各章节课程标准要求和教学目标
- 脊椎动物-(一)鱼 课件-2024-2025学年人教版生物七年级上册
- 2024年人教版一年级英语(上册)模拟考卷及答案(各版本)
- 2024年七年级历史上册 第10课《秦末农民大起义》教案 新人教版
- DB12T 1344-2024 城市轨道交通固定资产分类与编码地方标准
- 人教版(2024)七年级地理上册5.1《人口与人种》精美课件
- 企业绿色供应链建设实施方案
- 运动治疗技术智慧树知到答案2024年白城医学高等专科学校
- 新苏教版三年级上册科学全册知识点
- 智能交通系统智慧树知到答案2024年山东大学
- 2024年农艺工:农作物植保员专业技术师知识考试题与答案
评论
0/150
提交评论