导数的应用教学设计_第1页
导数的应用教学设计_第2页
导数的应用教学设计_第3页
导数的应用教学设计_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 导数一、考纲要求1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)2了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)3会利用导数解决某些实际问题.二、知识梳理1函数的单调性与导数在某个区间(a,b)内,如果 ,那么函数yf(x)在这个区间内单调递增;如果 ,那么函数yf(x)在这个区间内单调递减如果 ,那么函数yf(x)在这个区间上是常数函数 问题探究:若函数f(x)在(a,b)内单调递增,那么一定有f(x)&

2、gt;0吗?f(x)>0是否是f(x)在(a,b)内单调递增的充要条件? 2函数的极值与导数(1)函数的极小值若函数yf(x)在点xa处的函数值f(a)比它在点xa附近其他点的函数值 ,且f(a)0,而且在点xa附近的左侧 ,右侧 ,则a点叫做函数的极小值点,f(a)叫做函数的极小值(2)函数的极大值若函数yf(x)在点xb处的函数值f(b)比它在点xb附近其他点的函数值 ,且f(b)0,而且在点xb附近的左侧 ,右侧 ,则b点叫做函数的极大值点,f(b)叫做函数的极大值, 和 统称为极值3函数的最值与导数函数f(x)在a,b上有最值的条件如果在区间a,b上函数yf(x)的图象是一条 的曲线,那么它必有最大值和最小值三,考点探究考点一:函数的单调性与导数【例1】设函数f(x)x33x29x1求函数f(x)的单调区间对点练习: 1、的单调增区间为_,单调减区间为_ 2、若函数在(1,+)上递增,则实数a的取值范围为_考点二:函数的极值与导数【例2】设x1与x2是函数的两个极值点(1)试确定常数a和b的值;(2)试判断x1,x2是函数f(x)的极大值点还是极小值点,并求相应极值练习:已知函数f(x)x22lnx.求函数f(x)的单调区间和极值考点三:函数的最值与导数练习: 已知函数(aR,a0) 若a1,求f(x)在,e上的最大值和最小值.4、 课堂小结,总结规律

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论