结构动力学第一章概述_第1页
结构动力学第一章概述_第2页
结构动力学第一章概述_第3页
结构动力学第一章概述_第4页
结构动力学第一章概述_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第1章概述研究结构在动荷载作用下的相应规律的学科称为结构动力学结构动力学着重研究结构关于动荷载的响应(如,位移、内力、速度、加速度等的时刻历程)以便确信结构的承载能力和动力学特性,或为改善结构的性能提供依据,结构动力学是抗震设计的基础,也是减宸、隔震方法的理论依据。结构动力学研究对象与研究目的在动力作用下,结构产生振动,即结构在静平稳位置周围来回地运动(振动)。振动的缘故,有的是结构本身固有的缘故引发的,如转动机械转子的偏心引发的振动;有的是外界干扰所引发的,如地宸作用、风荷载作用,爆炸荷载的作用,和车辆行驶中由于路面不平顺引发的车辆及车辆引发的路而振动等。因此结构动力学的研究对象正是工程结构

2、的各类振动问题。而结构动力学的研究目的确实是熟悉和了解工程结构的振动规律,并据此指导工程结构的设计实践及其他有关工作,有效地减轻以幸免有害的振动给工程结构造成破坏,从而为人类社会带来更多的福利,这确实是结构动力学研究的目的和意义。1 .1.1动荷载的概念作用在结构上的荷载是由三个因素确信的,即大小、方向和作用点。若是这些因素不随时刻转变或随时刻缓慢转变,那么在求解结构的响应时可把其作为静荷载处置加以简化计算,如框架结构的衡宇在自身重力荷载作用下的内力和变形,水塔装满水后的内力和变形等都是结构静力学的范围。若是作用在结构上的荷载的大小、方向和作用点随时刻转变,使得质量运动加速度所引发的惯性力与荷

3、载相较大到不可轻忽时,那么把这种荷载称为动荷载。如衡宇结构在风荷载作用下的内力和变形,桥梁结构在汽车荷载作用下的内力和变形,和轮船在海浪的冲击下的内力和变形等都是结构动力学的范围。应当说明,静与动和加载慢与快是相对的,它与结构自振周期有紧密关系,假设荷载从零增至最大值的加载时刻远大于结构自振周期,例如前者为10s后者为1s,那么加载进程能够为是缓慢的,可作为静荷载对待。可是假设荷载从零增至最大值的加载时刻接近或小于自振周期,那么加载进程应以为是快速的,这种荷载应作为动荷载来处置。由动荷载的概念可引申到其他间接作用,如引发基础运动的地震作用等。其中地震作用引发的地面运动通过基础传给上部结构,使之

4、产生惯性力,而此惯性力往往能够达到较高的水平,因此地震作用为典型的动力作用。2 .L2动荷载的分类动荷载是时刻的函数,依照动荷载随时刻转变的规律,能够分为确信性荷载与非确信性荷载两大类。3 .确信性荷载若是荷载的转变是时刻的确信性函数,那么称此类荷载为确信性荷载,常见的确信性荷载有如下类型: 简谐周期荷载:荷载随时刻做周期性性转变,是周期荷载中最简单也是最为重要的一种荷载,其形式和来源如下图,其函数形式可用/(/)=Asina或bQ)=Acosa来表示它的转变规律。工业厂房中 的旋转电机图简谐周期荷载特点及来源 非简谐周期荷载:荷载随时刻作周期性转变,是时刻/的函数,但不能简单的用三角函数来表

5、示,如下图,例如平稳情形下波浪对大坝的动水压力,轮船螺旋桨产生的推力等。船尾推进力图非简谐周期荷载特点及来源 冲击荷载,荷载的幅值在很短的时刻内急剧增大或减小,例如,爆炸引发的冲击波、突加的重量、打桩机锤击引发的地基振动等,如下图。作用在建筑物上的爆炸冲击荷载图冲击荷载特点及来源注意:关于由地震和风引发的作用于建筑结构的地震作用或风荷载,尽管它随时刻的转变规律比较复杂,但其大小,方向是给定的因此当其用于结构的响应分析时,属于确信性荷载.作用在建筑 物上的地宸 作用图地震作用特点及来源4 .非确信性荷载。若是荷载随时刻的转变不能用确信的时刻函数来描述,那么称此类荷载为非确信性荷载。随机荷载是一种

6、非确信性荷载,它在任一时刻荷载的大小是随机变量。例如建筑物以后遭遇的地震作用、风荷载是未知的,在以后的任一时刻段内的确切量是无法事前确信的,它属于随机荷载。结构在随机荷载作用下的响应,称为结构的随机振动分析。注意:地震是直接作用在地基上,由于土壤的扰动引发基础的振动,进而引发建筑结构的振动,因此地震是间接作用在结构上的,因此只能称之为地震作用而不能称之为地震荷载,只有直接作用在建筑结构上的作用才能称之为荷载如风荷载、雪荷载等。关于地宸作用和风荷载而言,一个确信的记录相当于随机事件的一个样本,每一个具体的样本都是确信性的,但大量的样本的集合能够反映出事件的随机规律。由此可知尽管非确信性荷载不能用

7、历时刻/的确信性函数来描述,但它服从统计规律。结构动力学的任务结构动力学的大体任务在于分析结构振动时的固有力学特性,如确信结构的周期、频率、振幅等,进而确信结构在动力荷载作用下结构的内力(弯矩、剪力和轴力)和变形,以使设计时结构能知足强度和刚度的要求。或采取减振或防振方法,为改善工程结构体系在动力环境中的平安性和靠得住性提供理论基础。在进一步的研究中要知足动力稳固性的要求,因此在振动情形下的刚度、强度和稳固性是振动力学研究的大体内容。1.2.1 结构动力学问题的大体特点结构动力学与结构静力学相较,有如下几个方面的不同:由于结构动力问题中的荷载随时刻转变,显然动力问题不像静力问题那样具有“单一”

8、的解答,而必需成立相应于响应历程中全数时刻的一系列解答;若是结构仅经受静力荷载,那么它的内力和位移仅仅依托于给定的外荷载,其平稳关系是外力和恢复力之间的平稳。可是若是结构作用动力荷载,则结构所产生的位移和加速度有关,这些加速度产生与其反向的惯性力,于是结构的恢复力不仅要平稳外加动力荷载,还要平稳加速度引发的惯性力:动力问题中结构响应的大小,与荷载的大小和荷载随时刻的转变进程有关,若是荷载的F扰频率接近结构的固有频率,尽管荷载的幅值不大,也会引发结构专门大的振动响应即共振。1.2.2 结构动力学的任务结构动力学的任务可归纳为以下四个方而:1 .提供对结构进行动力分析的方式:2 .确信结构的固有动

9、力特性,并成立结构固有动力特性、动荷载和结构的动力响应三者之间的彼此关系:3 .计算结构的动力响应,以确信结构受到动荷载或振动时的能量水平,从而提供对结构进行动力靠得住性设计的依据;4 .对结构抗震设计的减震、隔震方法提供理论依据。结构动力分析中体系的自由度在动力分析中,惯性力是使结构产生动力响应的本质因素,而惯性力的产生又是由结构的质量所引发的(尸=Ty)。也确实是说在振动进程中,结构上凡有质量处均会产生惯性力。因此,对结构中质量位置及其运动的描述是结构振动分析的关键。在结构动力学中,要取得一个实际结构体系在数学上的合明白得,需要一个理想化或简化的数学模型,体系的自由度即是模型成立进程中需要

10、研究的一个问题。注意:惯性力歹=-/的存在与否是结构动力学与静力学一个最明显的特点,若是把F=-my加到原先受力的质量上,那么动力问题可作为静力平稳问题来处置。1.3.1体系的动力自由度在结构振动进程中的任一时刻,确信体系全数质量位置或变形状态所需的独立几何参数的个数,称为体系的动力自由度,简称为自由度。这些独立的参数是动力分析的大体未知量,它们是线位移或角位移。依照体系的动力自由度的数量,将结构体系分为单自由度体系(即1个自由度)、多自由度体系(自由度等于2或大于2)及无穷自由度体系。由于实际结构的质量都是持续散布的,因此任何一个实际结构都可认定是具有无穷多个自由度的体系。若是所有结构都按无

11、穷自由度加以分析计算,不仅十分困难,而且实践证明也没有必要。因此通常对计算模型加以简化,一样称之为结构的离散化(或动力计算简图的确信)。离散化的方式确实是把无穷自由度问题转化为有限自由度问题的进程。动力分析中经常使用的结构离散化的方式有集中质量法、广义坐标法和有限元法。1,集中质量法所谓集中质量法,是将结构的散布质量按必然规那么集中到结构的某个或某些位置上,成为一系列离散的质点或块,其余位置上再也不存在质量,从而将无穷自由度体系简化为有限自由度体系。例如分析图所示质量散布均匀的梁结构的振动,依照计算精度的要求,可采纳图(a)、(b)、所示的计算简图,其中(a)是单自由度体系,计算最简单,结果精

12、度最差;(b)是双自由度体系,计算难度居中,结果精度也居中:(c)是多自由度体系,计算比较复杂,结构精度最好。若是不考虑梁的轴向变形,图中每一个质量的位置只需要一个竖向位移参数即可确信。乂口)图梁式结构(a)(b)(c)图梁式结构计算简图再例如关于图所示的多层框架结构衡字,由于楼面的刚度和质量较大,在做水平方向振动分析时,可假定横梁是无穷刚性的,并将柱子和楼板的质量集中到柱两头的横梁上,采纳图所示的动力计算简图。图框架结构图框架结构计算简图注意:关于“质量”的说明,在那个地址的质量是指质点,即只有质量而没有大小的物体。因此,它的运动只有线位移而无角位移,因此平而问题中一个质点一样只有两个自由度

13、,而在空间问题中一个质点一样有三个自由度,当质量为一质量块时,除线位移自由度外,还需考虑转角自由度的阻碍。关于“约束”的说明。注意振动分析中的约束与通常力学中的“约束”的区别,如“弹性约束”(弹簧)在振动分析中就不属于约束,因为这种约束并非能成为限制质点运动的装置。如下图的体系为2个自由度的体系。IF”)I。)图2个自由度体系2 .广义坐标法所谓广义坐标法(即独立坐标),是通过对体系运动的位移形态从数学的角度施加必然内在的约束,从而使结构体系的振动由无穷自由度转化为有限自由度。这种约束形态的数学表达式称为位移函数(即形函数),其中所含的独立参数便称为广义坐标。例如关于图所示的质量散布均匀的简支

14、梁,可假定其竖向振动时的位移函数为正弦曲TTYz线,(见图)即取位移函数为系数6(1)称为广义坐标,因仅q。)一个参数即可确信全梁上所有质量的位置,因此体系的振动就转化为单自由度体系的振动。图简化为单自由度的广义坐标函数为了知足计算精度的要求,能够将图中的问题,用一组位移函数的线性和表示,即将图(a)、(b)、(c)相加,其表达式为:nr-1式中:姓X):知足位移边界条件的给定位移函数,可称之为形函数;4。):待定参数,亦称为广义坐标。113万K图简化为多个广义坐标的函数现在,体系的位移函数y(xj)将由个广义坐标确信,称为个自由度的振动问题。关于图取前三项叠加,那么体系的形函数为:/X(、.

15、7CX/,27TX7.37tx=j(r)sin+2(f)sin+%如此就将无穷个自由度体系简化为三个自由度体系,三个自由度别离为6(,)、生卜)、出土)。3 .有限单元法图简支梁单元与结点的划分示意该法是将有限元法的思想用于解决结构的动力计算问题。对证量散布均匀的实际结构,体系自由度数为单元结点可能发生的独立位移未知量的总数,如下图。其要点是先把结构划分成适当数量的单元,然后对每一个单元采纳广义坐标法,通常取单元的假设干个几何特点点处的广义坐标作为广义坐标,并对每一个广义坐标成立相应的位移函数,如此无穷自由度的体系被简化为有限自由度的体系0一样来讲,有限单元法综合了集中质量法和广义坐标法的某些

16、特点,是超级灵活有效的离散化方式,它既提供了方便、靠得住的理想化模型,又专门适合用于电子运算机进行分析,是最有效的数值计算方式。用有限单元法编制的通用结构分析程序如ANSYS、ABAQUS等均有十分壮大的瞬态、稳态、谱分析和随机动态分析功能。体系自由度的确信1 .集中质量法集中质量法确信结构的动力自由度数量时应注意以下几点:平而问题,一个质点有2个独立自由度(水平和竖向位移),如图(f)所示,而质量块有3个独立自由度(水平和竖向位移和转动):空间问题,一个质点有3个独立自由度,而质量块有6个独立自由度;结构自由度的数量与集中质量数量无关,如图(a)、(b)、(c)所示:结构自由度数量与结构是不

17、是静定和超静定次数无关:一样情形下,受弯构件的轴向变形都可忽略不计:结构自由度数量与计算假定有关,一样来讲自由度数量越多,就越能反映实际结构的动力性能,但工作量也越大。2 .广义坐标法和有限元法关于广义坐标法或有限元法,体系的自由度就等于广义坐标数或独立结点的位移数量。例:求图所示常见体系的自由度7?一(/)|网,W物W三(a)(b)(c)(a)(b)(c)忽个略轴向变形,自由度:1I_! (0IM,)(d)(e)(f)(d)(e)(f)自由度:2个图结构的动力特性结构在动荷载作用下的响应规律,与结构的质量、刚度散布和能量耗散等有关。由它们导出的表征结构动力响应特性的一些固有量,称为结构动力特

18、性。关于不同的结构,只要它们的动力特性相同,那么在相同的动荷载作用下它们的动力响应(位移、速度、加速度等)的规律都是一样的,这和静力分析是不同的。因此结构动力特性是结构动力分析的重要内容。结构的动力特性包括结构的自振频率、结构的振型和结构的阻尼三个方而。结构的自振频率当结构受到某种外界干扰后,产生位移或速度而偏离平稳位置,但外界干扰消失后,结构将在其平稳位置周围继续振动,这种方式称为自由振动。以下介绍几个与自振频率相关的概念。1 .自振频率:结构在自由振动时的频率称为结构的自振频率或固有频率,用0表示,自振频率的个数与结构的自由度数相等。2 .频率谱:结构的自振频率按由小到大的顺序排列称为结构

19、的频率谱,不同类型的结构具有不同的频率谱特点,其中频率距离较大的称为稀疏型频率谱,如,单跨梁、悬臂梁和不考虑扭转振动的衡宇建筑等结构,其频率谱为稀疏型频率谱:频率距离较小的称为密集型频率谱,如持续梁、板、空间结构和考虑扭转振动的衡宇建筑等结构,其频率谱为密集型频率谱。3 .大体频率:频率谱中最小的频率称为结构的大体频率,简称基频(或第1阶频率)记为,其余按由小到大依次记为,/,%,相应的称为第2阶频率、第3阶频率第阶频率。L4.2结构的振型当结构按频率谱中某一个自振频率做自由振动时,其变形形状维持不变(即振动进程中各个质量的位移之比维持一个确信的比例关系),这种变形形状称为结构的主振型(或固有

20、振型)简称振型。结构按基频做自由振动时的振型称为结构的大体振型,其余依次称为第2阶振型、第3阶振型,第阶振型。例如下图的两个自由度的体系,在每阶频率心下的振型如下图。第2阶振型第1阶振型图两个自由度体系振型结构的阻尼结构自由振动的进程其实质是势能与动能彼此转化的进程,依照能量守恒定律,自由振动将永久维持初始条件所决定的振幅,并持续运动下去。但事实上,结构自由振动的振幅都会随时刻而衰减,通过一按时刻后停止振动,这是因为系统的能量由于某种缘故此消耗。这种能量耗散称为阻尼,由于阻尼,使振动衰减的系统称为有阻尼系统。通常以为、产生能量耗散的缘故有结构材料的内摩擦(或黏性)、构件连接处的摩擦、周围介质(如空气、建筑地基)的阻力阻碍等。可是有关阻尼的作用机理,目前尚未完全研究清楚。为了从数学上便于处置,目前通常采纳一些假定,采纳等效粘滞阻尼理论,即不计入空气、地基等因素,假设结构内部有所谓的阻尼器,以此代表产生阻尼的机制,而且假定作用于质量上的阻尼力大小与质量运动速度成正比,方向与运动速度方向相反,如单自由度体系,阻尼力

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论