




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、肖家彪开题报告一、课题任务与目的任务:基于SLAM的停车场定位导航算法实现。目的:研究基于扩展卡尔曼滤波的 SLAM算法,根据最近邻法进行数据关联,融合激 光测距仪等外部传感器的感知信息,修改内部惯性传感器的积累误差,克月艮SLAM过程中由于单一传感器带来的不确定性问题。二、调研资料情况1国内外研究背景从工业革命后世界上出现第一辆汽车以来到现在,随着科技的快速发展,近年来,汽车 的数量一直显直线快速,并且汽车在不断的向人工智能化方向发展。如今社会,智能汽 车己经成为人们研究的热点和发展的方向,很多发达国家甚至发展中国家都将智能汽车 视为重点研究对象。我国在智能汽车这方面的研究取得很不错的成果,
2、我校研究的 "无 人驾驶智能汽车"曾获得了全国无人驾驶智能汽车竞赛第三名。1能汽车应用了计算机、人工智能和自动控制等技术,智能汽车是一个对环境感知、辅 助驾 驶等其他功能融合在一起的汽车,是现在社会科技发展的综合体现。随着社会的不 断发展 变化,随着汽车快速的发展,以后必将迎来更多无人驾驶智能汽车走进我们的生活。所以停车场1将面临一个很大的挑战,最重要的挑战就是停车场的导航定位。目前有很多种导航定位方式,其中最常用的主要有:卫星全球定位系统GPS导航、利用地球磁场导航以及汽车的惯性导航 2。而卫星全球定位系统 GPS导航的应用最为广泛, 并且也相对准确,GPS导航是现在在定
3、位中比较准确可靠白导航,但它并不是完美的,GPS导航同时也存在很多因素影响导航。例如 GPS全球定位系统会受到高楼大厦或者大树的影响,使链接卫星的通信线路被阻挡,从而 GPS全球定位系统会失去准确性。同理,地下停车场的导航定位也不能使用 GPS全球定位系统,并且现在的停车场也基本设在地下。在真正战争时候 GPS导航系统是不能够使用的,因为在战争中不管是哪个国家都不可能依赖于其他国家的导航系统。正因为这样,我国一直在研究开发北斗导航定位系统,这对于我国军事方面具有重大的意义,但是北斗导航和GPS导航一样都会受到敌方的反卫星导弹威胁。该问题是以后停车场所面临的重要挑战,研究基于其他定位和定向传感器
4、融合的导航定位算法势在必行。2 SLAM导航算法同步构图定位(simultaneous localization and mapping , SLAM 算法的雏形是由Sm让h、Self和Cheeseman于20世纪80年代提出的,最先用于陆上机器人的导航。该算法主要是在运载体运动时预测自身位置,并依靠对周围环境的感知即对位置保持不变的"特征"或称"路标"的测量,通过滤波估计来修正运载体和特征的位置估 计,在实现对运载体导航的同时,构造用这些特征表不同的精确的环境地图。目前,算法的应用已不仅仅局限于室内环境,而是进一步延伸到了室外、水下和航空环境3。3水下
5、SLAM导航算法描述与日常生活中用江河、湖泊、街道、房屋等标志性建筑表示地图的方法,类似水下航行器具有通过自身携带的传感器感知周围环境中明显的静止物体的能力,诸如珊瑚礁、水下建筑、失事船等,则可将这些显而易见的物体提取为二维点特征,用这些二维点特征在全局坐标系下的位置作为"路标",由此构成一幅可描述当前水下环境的 "特征地广44系统执行过程算法的执行是一个递推的过程,可以分为阶段预测时间更新阶段和修正测量更新阶段具体流程如图1所示,(1)状态方程的建立水下航行器首先通过自身携带的推位传感器如测速、测向仪器等,测量航行器在相邻时刻 的状态变化量,建立系统的状态方程,
6、预测自身位置。(2)建立观测模型在预测自身状态的同时,航行器利用外部传感器如水下照相机、侧扫声纳、前视声纳、合成孔径声纳等感知周围环境是否存在特征,得到一些量测值。这些量测可能产生于系统状态变量中已有的特征(即以前观测过的特征),也可能来源于新的特征(即尚未观测过的特征),还可能是虚警(因测量传感器存在误差导致)。产生来源不同,对量测的处理方法也不同。只有那些已有特征的量测可用于滤波更新过程新特征的量测需要转换后加人到状态向量中,成为地图中新的成员,具体见爷而虚警则直接从量测集中剔除,不予考虑。因此,需要将量测量与已有特征进行匹配,考察量测的来源,以确定该量测的用途,这过程就被称为数据关联过程
7、数据关联完成后,利用与已有特征关联上的观测量通过扩展卜尔曼滤波来对状态进行更新,可实现对航行器和特征位置的同时修正。3)新特征的加入在航行器运动过程中,它不断探索新的环境并发现新的特征,因此在完成对已有特征的更新后,需要对其状态变量进行扩维处理,将新特征加人到状态中去,建立航行器状态及地图已有特征与新特征间的关系,以构造精确、收敛的地图5。参考资料:1孟海军.智能停车场解决方案设计及实现 D.大连:大连理工大学,2013。2邓应伟.停车场智能管理系统 D.湖南:湖南大学,2006。3 韩锐.未知环境下基于 SLAM的移动机器人导航算法研究D.武汉:武汉理工大 学,20064 王文晶.EKF-S
8、LAM算法在水下航行器定位中的应用研究D .哈尔滨:哈尔滨工程大学,2007。5 孙杨.远程自主式水下航行器地磁图匹配算法研究D .长沙:国防科技大学,2006三、初步设计方法与实施方案1初步设计方法:了解卡尔曼滤波的SLAM算法,根据最近邻法进行数据关联,融合激光测距仪等外部传感器的感知信息,采用 MATLAB软件编程调试,减小内部惯性传感器的积累误差,克服SLAM过程中由于单一专感器带来的不确定性问题。2实施方案:(1)熟悉并熟练的使用 MATLAB高级编程软件。(2)熟悉并了解卡尔曼滤波的 SLAM算法。(3)利用MATLAB编辑好的程序进行调试修改,将惯性传感器的积累误差减到最小。(4)通过不断的调试修改,能够实现预定好的效果四、预期结果1、修正内部惯性传感器的积累误差2、克服SLAM过程中由于单一传感器带来的不确定性问题五、进度计划第1-5周:通过学习资料了解所需要涉及的各种跟课题有关问题。第6-7周:通过学习资料进一步学习 MATL
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租房托管服务合同协议
- f地面拆除合同协议
- 小区民宿租户合同协议
- 工厂年货外贸合同协议
- 屋顶加装生产设备合同协议
- 外聘教师服务合同协议
- 国际外包合同协议
- 石护栏合同协议
- 多个合同对象签订协议
- 墙壁租给广告合同协议
- 福建省宁德福鼎市2024-2025学年七年级上学期期中考试语文试题
- 福建省普通高中6月学业水平合格性考试英语试题(含答案解析)
- 2019 SDF-2019-0002《山东省建设工程施工合同(示范文本)》
- 医院患者信息保密管理制度
- 心肺复苏完整版本
- 220kV变电站电气设备常规交接试验方案
- 银行比较新颖的沙龙活动
- 九年级道德与法治上册 第二单元 民主与法治 第四课 建设法治中国教案 新人教版
- 北京市2024年中考历史真题试卷(含答案)
- 学习《吴军阅读与写作》 (50讲 )
- 房产证代办服务合同
评论
0/150
提交评论