


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习方法报 全新课标理念,优质课程资源6.4探索多边形的内角和与外角和(2)教学目标(一)教学知识点1.了解多边形的外角定义,并能准确找出多边形的外角.2.掌握多边形的外角和公式,利用内角和与外角和公式解决实际问题.(二)能力训练要求1.经历探索多边形的外角和公式的过程.进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并了解多边形的外角和公式,进一步发展学生的说理和简单推理的意识及能力.(三)情感与价值观要求(1).经历多边形外角和的探索过程,培养学生主动探索的习惯;(2).通过对内角、外交之间的关系,体会知识之间的内在联系。.教学重点:多边形的外角和
2、公式及其应用.教学难点:多边形的外角和公式的应用.教学过程:一.巧设情景问题,引入课题清晨,小明沿一个五边形广场周围的小跑,按逆时针方向跑步.(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们.(2)他每跑完一圈,身体转过的角度之和是多少?(3)在上图中,你能求出1+2+3+4+5吗?你是怎样得到的?(请同学们探讨解决,教师总结)下面大家来看小亮的思考:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA、OB、OC、OD、OE,得到、,其中:=1,=2, =3,=4,=5.大家看图,1、2、3、4、5不是五边形的角,那是什么角呢?它们的和叫什么呢?(这
3、五个角是五边形的外角,它们的和叫外角和.)我们这节课就来探讨多边形的外角、外角和.二.讲授新课那什么是多边形的外角、外角和呢?我们可类似三角形的外角定义来定义多边形的外角. 另一边的反向延长线所组成的角叫做这个多边形的外角。在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和.一般地,在多边形的任一顶点处按顺(逆)时针方向可作外角,n边形有n个外角.那多边形的外角和是多少呢?我们来回忆一下:三角形的外角和为多少?(360°)刚才我们又研究了五边形的外角和,它为360°,那大家想一想:如果广场的形状是六边形、八边形.它们的外角和也等于360°吗?(学生
4、讨论,得出结论)(六边形的外角和是360°,八边形的外角和是360°)那么能不能由此得出:多边形的外角和都等于360°呢?能得证吗?因为多边形的外角与它相邻的内角是邻补角,所以,n边形的外角和加内角和等于n·180°,内角和为(n2)·180°,因此,外角和为:n·180°(n2)·180°= 360°.性质:多边形的外角和都等于360°由此可知,多边形的外角和与多边形的边数无关,它恒等于360°.下面大家来想一想、议一议:利用多边形外角和的结论,能不能推
5、导多边形内角和的结论呢?(请学生思考后回答)(因为对于n(n是大于或等于3的整数)边形,每个顶点处的内角及其一个外角恰好组成一个平角.因此,n边形的内角和与外角和的和为n·180°,所以,n边形的内角和就等于n·180°360°=n·180°2×180°=(n2)·180°).三知识应用例1一个多边形的内角和等于它的外角和的3倍,它是几边形?分析:这是多边形的内角和公式与外角和公式的简单应用.根据题意,可列方程解答.(让学生动手解答)解:设这个多边形是n边形,则它的内角和是(n2)
6、183;180°,外角和等于360°,所以:(n2)·180°=3×360°解得:n=8这个多边形是八边形.四.课堂练习(一)课本随堂练习1.一个多边形的外角都等于60°,这个多边形是n边形?解:因为多边形的外角和等于360°,所以根据题意,可知道这个多边形的边数是:360°÷60°=62.下图是三个完全相同的正多边形拼成的无缝隙不重叠的图形的一部分,这种多边形是几边形?为什么?解:这种正多边形是正六边形,理由是:设:这个正多边形的一个内角为x°,则由题图得:3x=360
7、176;.x=120°.再根据多边形的内角和公式得:n×120°=(n2)×180°.解得n=6(二)试一试1.是否存在一个多边形,它的每个内角都等于相邻外角的?为什么?解:不存在,理由是:如果存在这样的多边形,设它的一个外角为,则对应的内角为180°,于是:×=180°,解得=150°.这个多边形的边数为:360°÷150°=2.4,而边数应是整数,因此不存在这样的多边形.2.在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?解:最多能有三个钝角,最多能有三个锐角.理由是:设四边形的四个内角的度数分别为:°,°,°,°,则+=360°,、的值最多能有三个大于90°,否则、都大于90°.+360°.同理最多能有三个小于90°.五.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit 5 what were you doing when the rainstorm came Section B 3a~3b Self check教学设计 -2024-2025学年人教版英语八年级下册
- 2024-2025学年高中生物上学期《细胞呼吸》教学设计
- Module 10 A holiday journey Unit 3 Language in use 教学设计-2023-2024学年外研版英语七年级下册
- Unit 2 Travelling -study skills 教学设计 2023-2024学年牛津译林版英语八年级下册
- 7呼风唤雨的世纪(教学设计)-2024-2025学年四年级上册语文统编版
- 14 母鸡 (教学设计)2023-2024学年统编版语文四年级下册
- 三年级信息技术上册 第3课 打开窗口天地宽教学设计 粤教版
- 《京调》(教学设计)-2023-2024学年湘艺版(2012)音乐六年级下册
- 牙科吸痰护理操作规范
- 七年级生物上册 3.2.3 开花和结果教学设计2 (新版)新人教版
- 病房发生停电的应急预案
- 推拿治疗学腰肌劳损
- 人工智能赋能教师数字素养提升
- 战略管理知到智慧树章节测试课后答案2024年秋华南理工大学
- 小学三年规划
- 监控系统施工验收标准
- 2024ESC心房颤动管理指南解读
- 建筑轻质条板隔墙技术规程知识培训
- 2023年EAS系统标准操作手册固定资产
- 机械制造技术基础(课程课件完整版)
- 江西省南昌市高三二模考试地理试题
评论
0/150
提交评论