![转动惯量公式表36882_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-3/8/dbeac18a-529b-425e-8efe-df3fff04e988/dbeac18a-529b-425e-8efe-df3fff04e9881.gif)
![转动惯量公式表36882_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-3/8/dbeac18a-529b-425e-8efe-df3fff04e988/dbeac18a-529b-425e-8efe-df3fff04e9882.gif)
![转动惯量公式表36882_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-3/8/dbeac18a-529b-425e-8efe-df3fff04e988/dbeac18a-529b-425e-8efe-df3fff04e9883.gif)
![转动惯量公式表36882_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-3/8/dbeac18a-529b-425e-8efe-df3fff04e988/dbeac18a-529b-425e-8efe-df3fff04e9884.gif)
![转动惯量公式表36882_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-3/8/dbeac18a-529b-425e-8efe-df3fff04e988/dbeac18a-529b-425e-8efe-df3fff04e9885.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、常见几何体转动惯量公式表对于细杆当回转轴过杆的中点并垂直于杆时;J=m(L2)/12其中m是杆的质量,L是杆的长度。当回转轴过杆的端点并垂直于杆时:J=m(L2)/3其中m是杆的质量,L是杆的长度。对于圆柱体当回转轴是圆柱体轴线时;J=m(r2)/2其中m是圆柱体的质量,r是圆柱体的半径。对于细圆环当回转轴通过中心与环面垂直时,J=mR2;当回转轴通过边缘与环面垂直时,J=2mR2;R为其半径对于薄圆盘当回转轴通过中心与盘面垂直时,J=1/2mR2;当回转轴通过边缘与盘面垂直时,J=3/2mR2;R为其半径对于空心圆柱当回转轴为对称轴时,J=1/2m(R1)2+(R2)2;R1和R2分别为其内
2、外半径。对于球壳当回转轴为中心轴时,J=2/3mR2;当回转轴为球壳的切线时,J=5/3mR2;R为球壳半径。对于实心球体当回转轴为球体的中心轴时,J=2/5mR2;当回转轴为球体的切线时,J=7/5mR2;R为球体半径对于立方体当回转轴为其中心轴时,J=1/6mL2;当回转轴为其棱边时,J=2/3mL2;当回转轴为其体对角线时,J=(3/16)mL2;L为立方体边长。只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。角加速度与合外力矩的关系: 角加速度与合外力矩式中M为合外力矩,为角加速度。可以看出这个式子与牛顿第二定律是对应
3、的。角动量: 角动量刚体的定轴转动动能: 转动动能注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。只用E=(1/2)mv2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v只代表刚体的质心运动情况。由这一公式,可以从能量的角度分析刚体动力学的问题。转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。其量值取决于物体的形状、质量分布及转轴的位置。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关
4、。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。转动惯量的表达式为I= mi*ri2,若刚体的质量是连续分布的,则转动惯量的计算公式可写成I=r2dm=r2dV(式中mi表示刚体的某个质元的质量,ri表示该质元到转轴的垂直距离,表示该处的密度,求和号(或积分号)遍及整个刚体。)转动惯量的量纲为L2M,在SI单位制中,它的单位是kg·m2。平行轴定理平行轴定理:设刚体质量为m,绕通过质心转轴的转动惯量为Ic,将此轴朝任何方向平行移动一个距离d,则绕新轴的转动惯量I为:I=Ic+md2
5、这个定理称为平行轴定理。一个物体以角速度绕固定轴z轴的转动同样可以视为以同样的角速度绕平行于z轴且通过质心的固定轴的转动。也就是说,绕z轴的转动等同于绕过质心的平行轴的转动与质心的转动的叠加垂直轴定理垂直轴定理:一个平面刚体薄板对于垂直它的平面的轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。 垂直轴定理表达式: Iz=Ix+Iy式中Ix,Iy,Iz分别代表刚体对x,y,z三轴的转动惯量.对于非平面薄板状的刚体,亦有如下垂直轴定理成立2: 垂直轴定理利用垂直轴定理可对一些刚体对一特定轴的转动惯量进行较简便的计算.刚体对一轴的转动惯量,可折算成质量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《13洁净的水域》说课稿-2023-2024学年科学六年级下册苏教版
- Unit 2 Months of a Year Lesson Three(说课稿)-2024-2025学年重大版英语六年级上册
- Unit 6 Chores Lesson 4 Let's spell(说课稿)-2024-2025学年人教新起点版英语五年级上册001
- 2025水泥砖销售合同范文
- 2024年七年级数学下册 第10章 一元一次不等式和一元一次不等式组10.4一元一次不等式的应用说课稿(新版)冀教版
- 中型臭氧设备购买合同范例
- 8 安全地玩(说课稿)-部编版道德与法治二年级下册
- 农业设备供货合同范例
- 冷库设备购销合同范例
- 个人借还款合同范例
- 2025年中国山泉水市场前景预测及投资规划研究报告
- GB/T 18109-2024冻鱼
- 2025年八省联考数学试题(原卷版)
- 重庆市2025届高三第一次联合诊断检测英语试卷(含解析含听力原文无音频)
- 《榜样9》观后感心得体会二
- 天津市部分区2024-2025学年九年级(上)期末物理试卷(含答案)
- 一氧化碳中毒培训
- 初二上册好的数学试卷
- 保洁服务质量与服务意识的培训
- 突发公共卫生事件卫生应急
- 《景观设计》课件
评论
0/150
提交评论