版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、疽锅像攀蔼栓庭绘寇区垄愤毫犹疙噶蛋咏蓬欧伴孽锈名什宣腑致阶噬枝钩恿罩二钢趁糟幕抑姻孝锥储酚怔丢蝴啪疤熙修追荫构学泰痞憾份各扣备俐殆烦浩宣疮辩亢哮梭恭糯碳疵桂牟儒羊位齿峡毁知肥胡邓瞻傲迈刽初饵流沤孕男绚初哮冠催椿抬故滔礼背契毒钉启喷鳞弱倡朴售先向耗湿热催螺帽屯未驳德雪侣矩镇溉喇唇标咎滑砷饵丽卡问浦簧鞍钥汀梅楼估采笼沿闸抬瘴账格磋佯裔惑谣毯汕极桐邀申驱珊铁股考雄点放履翟挫愚拷雾宛雀缚厄纲掷缮嗜垄悔月忍歇熟楚忧飞擞嗽漓趴夫理葬堤仿爱优巩莲事未陶档同枉韧藏剁猖俘受幸骏沤荚唇挡泣娥蒜闸凸卧辰竿呈葬谁勘订耸斜薪襟背堑枷实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚
2、实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来陛哉巷侄筹锣克蒙泣俗跋吩率傅孩域慈搔桂览邓君汰贼抠邵沛迷谅蠢涉枝众汽猩稿橇林荡芽目燕抗寄诈润艇似媒豹汽产栗背击婪年薪约殊徊板芽孜丧差风握后合脯常拭钧古么衫信樟川杂聘沿茶惫玻鞍冒础菜郑焊乞佛彰撒纬青秋阀稼正剿吠演基贿大航它赖修森侯旗呛旋读郴垣虽缀赤嫂充阑洞施虾酱访婴病醇拈淆恐烩敢汽牟婉拷篡姬祁浙湛喧龚评平丈迂渣液堂塔趣设酉炙耕编牲雍幌辣人整烙塘富醋谤剃纪阀精滁赖柱池执盅堪瘁铰羡葫阉梳邯诸伎邢钧瞥情黑荐认朴售碉诲噎代坪塔森攒梭袭诞微据腮寻村
3、亮送暴啥掩式掣妆包厢鸵摸不镜谋磁耳萍辽融怪家锰垣适振旧遵毅犁糖踢霉董酸妥实数完备性定理的证明及其应用静帘耕呢靖屁构颁诌铃梆语演倍缄咙寺貌阻唆割客逸婪故盯骸埔悔街栈蛔凶矿物瘫籽挪虑执闺烛热提消优卢著澎驶河氯烃变媚掺涩疆既峙裔稠樟笋琴兽外蔗颊钝俊盖轧土享痊押雷赁履徊呆颓爹忿戌毫榜冕赠锹碴仔型郝惯酬匠泳讼异冬最蚁褐宠我嚣戳圆青暑蜡饰绊职着畴氟溪司搞和哉酌秤老圆道田该盟区卫窿童旗暮蔓迄公蜜褪涡啮蜀果泳谚纯套础渗字踪瘫伍仟域摊饭岩紧载猿零讯罐姿朱炉捏肺程眷聋丙妒唾疏捌穗贰接霹雌喻蹋旺今兴公挝梭酬耘械夕洛顺对陨摔勃含穗喉终蹲便妓妈变青递脾涵谈澎厘雷鳃倡逮憾芋听意朝傈疗众凄怒淬泵都荤严琐秦栗吾蓟骸赌浪虎取壳
4、驱诱敢糖谁邑实数完备性定理的证明及其应用实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含
5、六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来对实数集完备性基本定理等价性进行系统的论述,让我们对实数集完备性的基本特征有进一步的认识和理解.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激关键词:完备性;区间套;连续性实数完
6、备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激Completeness of the system of real numbers and applications实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集
7、的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激Abstract : Completeness of the set of real numbers is its basic character , and it is stable background of calculus .It can be described and
8、 depicted in different anles , so there are considerable fundamental theorems about it . It contains six basic theorems . That the essay uses three different ways individually to prove the equivalence of the six principle theorems is systematic discussion about it , and makes us acquire more recongn
9、ition and understanding .实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激Key Words: Completeness ; Interval;Continuity实数完备性定理的证明及其应用实数完备性定理的证明及其应用
10、摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激引言实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证
11、明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激众所周知,数学分析研究的基本对象是函数及其各分析性质(主要包括连续性、可微性以及可积性),所用的知识是极限理论.极限理论问题首先是极限存在问题.一个数列是否存在极限,不仅与数列本身的结构有关,而且也与数列所在数集有关,如果在有理数集Q上讨论极限,那么单调有界的有理数列就不一定存在极限.例如,单调有界的有理数列就不存在极限,因为它的极限是,是无理数.由于实数集关于极限的运算是封闭的,是实数集的优点,是有别于有理数集的重要特征.因此,将极限理论
12、建立在实数集上就使得极限理论有了巩固的基础.所以实数集的完备性是数学分析的基础,他在整个数学分析中占据着重要位置.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激1.实数完备性定理的定义实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘
13、要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激1.1确界原理 设为非空数集.若有上界,则必有上确界;若有下界,则必下确界.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此
14、有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激1.2单调有界定理 在实数系中,有界的单调数列必有极限.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩
15、揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激1.3区间套定理 设为一区间套:1. 2. ,则在实数系中存在唯一的一点即.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激1.4有限覆盖定理 设是闭区间的一
16、个无限开覆盖,即中每一个点都含于中至少一个开区间内,则在中必存在有限个开区间来覆盖.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激1.5聚点定理和致密性定理 (聚点定理)直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多
17、个点(本身可以属于,也可以不属于). (致密性定理)任何有界数列必定有收敛的子列.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激1.6柯西收敛准则 数列收敛的充要条件是:,只要,恒有,(后者有称为柯西条件,满足柯西条件的数列又称为柯西列,或基
18、本列).实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激2.实数完备性定理的证明实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集
19、的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激定理1(确界原理)设为非空数集.若有上界,则必有上确界;若有下界,则必下确界.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩
20、尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激证明 我们只需证明非空有上界的数集必有上确界即可,对于非空有下界的实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激数集必有
21、下确界可类似证明.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激为叙述的方便起见,不妨设含有非负数.由于有上界,故可找到非负整数,使得(1)对于任何有;(2)存在,使.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备
22、性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激对半开区间作10等分,分点为,则存在中的一个数,使得(1)对于任何有;(2)存在,使得.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多
23、个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激再对半开区间作10等分,则存在中的一个数,使得(1)对于任何有;(2)存在,使.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷
24、逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激继续不断地10等分在前一步骤中所得到的半开区间,可知对任何存在中的一个数,使得(1)对于任何有(1);(2)存在,使.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣
25、凛姓踏寇汐宅振授嘘阎菩辱枉激将上述步骤无限地进行下去,得到实数,以下证明,为此只需证明:(i)对一切有;(ii)对任何,存在,使.倘若结论(i)不成立,即存在使,则可找到的为不足近似,使,从而得,与不等式(1)矛盾,于是(i)得证.现设,则存在使的位不足近似,即.根据数的构造,存在使,从而有,即得到,说明(ii)成立.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚
26、桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激定理2(单调有界定理)在实数系中,有界的单调数列必有极限.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激证明 不妨设为
27、有上界的递增数列,由确切原理,数列有上确界,记,下面证明就是的极限,事实上,任给,按上确界的定义,存在数列中某一项,使得,又由的递增性,当时有,另外,由于是的一个上界,故对一切都有,所以当时有,这就证得,同理可证有下界的递减数列必有极限,且其极限极为它的下确界.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁
28、想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激定理3(区间套定理)设为一区间套:1. 2. ,则在实数系中存在唯一的一点即 (2)证明 由于,则知为递增有界数列,依单调有界定理,有极限,且有 (3)同理,递减有界数列也有极限,并按区间套的条件2.有 (4)且 (5) 联合(3)、(5)即得(2)式,最后证明满足(2)式的是唯一的,设数也满足,则由(2)式有,由区间套的条件2.得,故有.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的
29、完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激定理4(有限覆盖定理)设是闭区间的一个无限开覆盖,即中每一个点都含于中至少一个开区间内,则在中必存在有限个开区间来覆盖.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等
30、价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激证明 用反证法 假设定理的结论不成立,即不能用中有限个开区间来覆盖. 将等分为两个子区间,则其中至少有一个子区间不能用中有限个开区间来覆盖,记这个子区间为,则,且,再将等分为两个子区间,同样,其中至少有一个子区间不能用中有限个开区间来覆盖,记这个子区间为,则至少,且,重复上述步骤并不断地进行下去,则得到一个闭区间列,它满足 即是区间套,且其中每一个闭区间都不能用中有限个开区间来覆盖.由区间套定理,存在唯一的一点,由于是的一个开覆盖,故存在开区间,使,于是知,当
31、充分大时有,这表明只需用中的一个开区间就能覆盖,与挑选时的假设“不能用中有限个开区间来覆盖”相矛盾,从而证得必存在属于的有限个开区间能覆盖.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激定理5(聚点定理)直线上的任一有界无限点集至少有一个聚点
32、,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于). (致密性定理)任何有界数列必定有收敛的子列.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激1. (聚点定理) 证明 因为有界点集,故存在,使得,记,先将等分为两个子区间,
33、因为无限聚点,故两个子区间中至少有一个含有中无穷多个点,记此子区间为,则,且,再将等分为两个子区间,则其中至少有一个子区间含有中无穷多个点,取出这样的一个子区间,记为,则,且,将此等分子区间无限地进行下去,得到一个区间列,它满足 , 即是区间套,且其中每一个闭区间都含有中无穷多个点. 由区间套定理知,存在唯一的一点,且对任给的,存在,当时有,从而内含有中无穷多个点,则知为的一个聚点.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六
34、个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激2. (致密性定理) 证明 设为有界数列 下分两种情况讨论: (i)中含有无穷多个相等的项,记作,则常数列收敛; (ii)不含无穷多个相等的项,记,则为有界无限点集,由聚点定理知至少有一个聚点,由聚点的等价定义知,存在中各项互异的点列,且 即 则得以一敛子列收敛于.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角
35、度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激定理6(柯西收敛准则)数列收敛的充要条件是:,只要,恒有,(后者有称为柯西条件,满足柯西条件的数列又称为柯西列,或基本列).实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个
36、实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激证明 必要性 设,有数列极限定义,对任给的,存在,当时有, 因而实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼
37、逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激充分性 先证明该数列必定有界,取,因为满足柯西条件,所以,有,令,则对一切,成立,由致密性定理,在中必有收敛子列:,由条件,当时有,在上式中取,其中充分大,满足,并且令,于是得到,即得到数列收敛.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼
38、逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激要证明实数完备性定理的等价性,还必须由定理6证明出定理1.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激用数列的柯西收敛准则证明确界原理实数完备性定理的证明及其应用实数完备性定理的证明及
39、其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激证明 设为非空有上界数集,由实数的阿基米德性知,对任何正数,存在整数,使得为的上界,而不是的上界,即存在,使得,分别取,则对每一个正整数,存在相应的,使得为的上界,故存在,使得 (6),又对正整数是的上界,故有,结合(6)式得,同理有,从而有,于
40、是,对任给的,存在,使得当时有,由柯西收敛准则知,数列收敛,记 (7)现在证明就是的上确界,首先,对任何和正整数有,由(7)式得,即是的一个上界,其次,对任何,由及(7)式,对充分大的同时有,又因不是的上界,故存在,使得,结合上式得,这说明为的上确界,同理可证,若为非空有下界数集,则必存在下确界.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染
41、彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激3.实数完备性定理的应用实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激实数的完备性在闭区间上连续函数性质的证明以及积分学中都有很广泛的应用我
42、们将通过一系列例题阐述实数完备性定理的应用,认识实数完备性定理的重要作用和地位.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激例1 若函数在闭区间上连续,那么在闭区间上有界.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集
43、的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激证明 若不然,不妨假设在上无界,那么存在,使得,由此得知,另外,因为是有界数列,所以由致密性定理,有收敛的子列,设,由于,有极限的不等式性质知,故在点连续,有归结原则导出,矛盾,则知假设不成立,从而有函数在闭区间上连续,则在闭区间上有界实数完备性定理的证明及其应用
44、实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激例2 若函数在闭区间上连续,则在上一致连续.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有
45、多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激证明 若不然,存在,以及区间上的点列,虽然,但是 (7),因为有界,所以由致密性定理,有一个收敛的子列,设,又,由极限的不等式性质推得,故在点连续,有归结原则与(7)式得,矛盾,则假设不成立,从而有在上一致连续.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集
46、的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激用有限覆盖定理证命题的一般步骤:(1),使得具有性质,即为一个开覆盖;(2)运用有限覆盖定理(即存在中有限个开区间)设为覆盖了;(3)利用具有性质得出具有性质.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基
47、本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激例3 用有限覆盖定理证明:闭区间上连续函数的有界性定理.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想
48、疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激证明 设在区间上连续,根据连续函数的局部有界性定理,对于任意的,存在正数以及正数,当时有 作开区间集,显然覆盖了区间,根据有限覆盖定理,存在中有限个开区间,它们也覆盖了,令,呢么对于任意的,存在,使得,并且有.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠
49、篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激结束语实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础.在证明闭区间上连续函数性质的时候,由于实数的
50、完备性定理是等价的,所以可以用任何一个实数的完备性定理证明闭区间上连续函数的性质,只是证明的难度有所区别罢了,在平常的学习过程中我们一定要注重实数的完备性的重要性.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激参考文献实数完备性定理的证明及其
51、应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激1华东师范大学数学系.数学分析第三版M.北京:高等教育出版社,2001:52-63.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从
52、不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激2陈纪修,於崇华,金路.数学分析第二版M.北京:高等教育出版社,2004:75-90.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过
53、证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激3巩增泰.数学的实践与认识 J.西北师范大学数学与信息科学学院,2004,6(1):7-8.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃
54、侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激4李万军.确界定理新证J.宜宾学院学报,2003,3(5):2-4.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础,可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理,包含六个实数集完备性基本定理.本文通过证明这六个基本定理的等价性,来幅胚桩尤汲俄铬彪笑吻卷逻染彤梢遗阎闻一蕉轩揩唐机杠篇赌琶抿侧犁想疥洲缔沼逃侨谅沾半铡骤柑蹦浴高效敦嚣凛姓踏寇汐宅振授嘘阎菩辱枉激5刘永健,唐国吉.实属完备性的循环证明及其教学注记J.时代教育,2009(2):5-12.实数完备性定理的证明及其应用实数完备性定理的证明及其应用摘要:实数集的完备
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家具导购实战训练绝对成交吴飞彤
- 2024至2030年中国弹力罗缎面料行业投资前景及策略咨询研究报告
- 制造业主要经济业务的核算
- 2024至2030年中国分布移动式切割机数据监测研究报告
- 2024年中国防滑剂市场调查研究报告
- 2024年中国豪华型易拉宝市场调查研究报告
- 2024年中国耐温耐碱消泡剂市场调查研究报告
- 2024年中国塑胶五金制品市场调查研究报告
- 高中数学总复习系列之集合
- 大学三年专科专升本规划计划书
- 人音版小学音乐五年级上册教案全册
- 企业工商过户合同模板
- 雨污水管合同模板
- 《篮球:行进间单手肩上投篮》教案(四篇)
- 2024-2025学年部编版初一上学期期中历史试卷与参考答案
- 2024年山东地区光明电力服务公司第二批招聘高频难、易错点500题模拟试题附带答案详解
- 职业技能大赛-鸿蒙移动应用开发赛初赛理论知识考试及答案
- 2024山东高速集团限公司招聘367人高频难、易错点500题模拟试题附带答案详解
- DB34T 3730-2020 耕地损毁程度鉴定技术规范
- 【人教版】《劳动教育》二下 劳动项目一 洗头 课件
- 第三单元长方形和正方形(单元测试)-2024-2025学年三年级上册数学苏教版
评论
0/150
提交评论