等差数列求和公式_第1页
等差数列求和公式_第2页
等差数列求和公式_第3页
等差数列求和公式_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、等差数列求和公式 等差数列前n项和公式,是数列部分最重要公式之一,学习公式并灵活运用公式可分如下四个层次:1.直接套用公式从公式中,我们可以看到公式中出现了五个量,包括这些量中已知三个就可以求另外两个了.从基本量的观点认识公式、理解公式、掌握公式这是最低层次要求.例1 设等差数列的公差为d,如果它的前n项和,那么( ).(A) (B)(C) (D)解法1 由于且知,选(C).解法2 对照系数易知此时由知故选(C).例2 设是等差数列的前n项和,已知与的等比中项为,与的等差中项为1,求等差数列的通项.解 设的通项为前n项和为由题意知,即化简可得解得或由此可知或经检验均适合题意,故所求等差数列的通

2、项为或2.逆向活用公式在公式的学习中,不仅要从正向认识公式,而且要善于从反向分析弄清公式的本来面目.重视逆向地认识公式,逆向运用公式,无疑将大大地提高公式的解题功效,体现了思维的灵活性.例3 设求证:证明 又又且例4 数列对于任意自然数n均满足,求证: 是等差数列.证明 欲证为常数,由及可得推出作差可得因此由递推性可知: 为常数),所以命题得证.这是九四年文科全国高考试题,高考中得分率极低,我们不得不承认此为公式教学与学习中的一个失误,倘若能重视逆向地认识公式,理解公式,应用公式,还“和”为“项”,结局还能如此惨重吗?3.横向联系,巧用公式在公式的学习过程中,还要从运动、变化的观点来认识公式,

3、从函数及数列结合的角度分析透彻理解公式,公式表明是关于n的二次函数,且常数项为0,同时也可以看出点列均在同一条抛物线上,且此抛物线过原点,体现了思维的广阔性,请再看例2.解 设,则可得解得或,所以或从而或y例5 设等差数列的前项和为,已知指出中哪一个值最大,并说明理由. x1213解 由于表明点列都在过原点的抛物线上,再由易知此等差数列公差d<0,且图象如图所示,O易知其对称轴为,于是,故最大.4.恰当变形妙用公式对公式进行适当变形,然后再运用公式是公式应用的较高层次,从而丰富了公式本身的内涵,往往给解题带来捷径,体现了思维的深刻性.对于公式,变形可得,对于公式,变形可得它表明对于任意,点列都在同一直线上.例6 等差数列的前m项和为30,前2m项和为100,则它的前3m项和为( )(A)130 (B)170 (C)210 (D)260解法1 又由于,从而选(C).解法2 由于点在同一直线上,因此,化简可得:,选(C).解法3 由于点列均在同一直线上,说明数列成等差数列,从而可得,解得或从而可求得或,故等差数列通项为或从以上可以看出,对公式的学习不应仅仅停留在公式的表面.对公式深刻而丰富的内涵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论